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Abstract: In this paper, we investigate the nonparaxial propagation dynamics of the chirped
circular Airy derivative beams (CCADBs) based on vector angular spectrum method. In the case
of nonparaxial propagation, the CCADBs still maintains excellent autofocusing performances.
Derivative order and chirp factor are two important physical quantities of the CCADBs to regulate
the nonparaxial propagation characteristics, such as focal length, focal depth and K-value. In
the nonparaxial propagation model, the radiation force on a Rayleigh microsphere induced the
CCADBs are also analyzed and discussed in detail. The results demonstrate that not all derivative
order CCADBs can achieve stable microsphere trapping effect. The derivative order and chirp
factor of the beam can be used to coarse and fine tune the capture effect of Rayleigh microsphere,
respectively. This work will contribute to the more precise and flexible use of circular Airy
derivative beams in optical manipulation, biomedical treatment and so on.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Abruptly autofocusing (AFF) beams have attracted widespread attention in recent years due
to their important applications in many fields such as particle manipulation, laser surgery, and
high harmonics generation. A typical AFF beam is often referred to circular Airy beam (CAB),
which was first described by the radially symmetric Airy function in 2010 [1]. It has been
demonstrated that the CAB relied on radial Airy waves whose light intensity maintains quite
low level during propagation until the focal point, where it abruptly increases by several orders
of magnitude, and then it decreases with oscillation [2]. Subsequently, other different types
of AFF beams following pre-engineered caustic trajectories have also been intensively studied
through theory and experiments, especially the circle Pearcey beams and circle Swallowtail
beams [3–6]. According to the caustic field theory, in essence, Airy beam, Pearcey beam, and
Swallowtail beam belongs to the typical representative of the caustic field in different dimensions,
respectively. Additionally, optical researchers also designed novel AFF beams by means of the
non-catastrophe integral, such as the way to structure the polarization state and the way to add
force symmetric perturbation [7,8].

Very recently, a novel kind of AFF beam namely circular Airy derivative beams (CADBs) was
introduced through a combination of theoretical and experimental studies [9–11]. As an extension
of CABs, the CADBs have a radial profile that is described by derivatives of the Airy function and
exhibit stronger AFF ability than the CABs under the same conditions. Therefore, the CADBs
could be more beneficial for particle trapping and manipulation in the field of optical tweezers
to realize strong trapping stiffness. Nowadays, optical tweezers have become an indispensable
tool to study the biological cells and viruses, DNA molecules, neutral atoms, and other particles

#484878 https://doi.org/10.1364/OE.484878
Journal © 2023 Received 3 Jan 2023; revised 2 Mar 2023; accepted 2 Mar 2023; published 17 Mar 2023

https://orcid.org/0000-0002-9965-4703
https://orcid.org/0000-0002-7730-8906
https://orcid.org/0000-0002-0915-751X
https://orcid.org/0000-0002-6886-3270
https://orcid.org/0000-0001-9266-2498
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.484878&amp;domain=pdf&amp;date_stamp=2023-03-22


Research Article Vol. 31, No. 7 / 27 Mar 2023 / Optics Express 11054

[12–15]. However, to our best knowledge, radiation forces induced the CADBs have not been
studied before.

In most situations, the light beams used in optical tweezers must be small enough to trap
particles. The waist radius of the CADBs at the focal point is typically on the order of wavelengths,
so the paraxial propagation theory is no longer sufficiently accurate to calculate the radiation force
on particles induced the CADBs, and the nonparaxial propagation theory has to be considered
[16–19]. In this paper, we initially study the nonparaxial propagation dynamics of CADBs based
on vector angular spectrum propagation theory. Then, we compare and analyze the calculation
results under paraxial propagation and nonparaxial propagation, especially in terms of focal length,
focal depth and K-value characteristics. Especially, we also investigate the influence of chirp
parameters on the propagation characteristics of CADBs. Finally, we study the radiation force of
the CCADBs exerted on a Rayleigh dielectric microsphere, and compare the trapping stability of
the CCADBs to the microsphere under different derivative orders and chirp parameters.

2. Nonparaxial propagation theory of CCADBs

The electric field of CCADBs on the initial plane is described as

E(r, φ, z = 0) = Anexp
[︃
a
(︃
r0 − r

w0

)︃]︃
Ai(n)

(︃
r0 − r
bw0

)︃
exp

(︃
ic

r
w0

)︃
, (1)

where r is the radial coordinate, φ denotes an azimuthal angle, and z is the propagation distance.
An is constant amplitude related to the optical power of CCADBs on the initial plane. r0 is the
radius of the primary ring, w0 is a scaling factor, a is an exponential decay factor, b denotes
a distribution factor parameter, and c represents the chirp coefficient. Ai(n) is the nth-order
derivative of Airy function with respect to r. If n= 0 and c= 0, the CCADBs reduces to the
familiar CAB.

For simplicity, we consider the CCADBs on the initial plane is linearly polarized in the x
direction. The nonparaxial propagation of the CCADBs in free space can be analyzed by using
the vectorial angular spectrum method, and the expression of the electric field in the whole
half-space z> 0 can be given as:

U(r, φ, z) = Ex(r, z)x̂ + Ez(r, φ, z)ẑ, (2)

where only light intensity is concerned, thus Ex (r, z) is not related to the azimuthal angle φ.
In terms of angular spectrum propagation method, Ex (r, z) can be expressed as the following
0th-order inverse Hankel transform form owing to the circular symmetry of CCADBs:

Ex(r, z) = H−1
0[Êx(fr; z)], (3)

Êx(fr; z) = Êx(fr; 0) exp{i(2π/λ)z[1 − (λfr)2]
1/2

}, (4)

Êx(fr, 0) = H0[E(r, 0)], (5)

where fr is the spatial frequency, H0 and H−1
0 stand for the 0th-order Hankel transform and

inverse Hankel transform. We consider that there is no difference between the Hankel transform
and the inverse Hankel transform in the mathematical form. Êx (fr; 0) is the angular spectrum of
CCADBs on the initial plane z= 0. Correspondingly, the Ez component can be expressed as:

Ez(r, z) = −iH1
−1

{︃
H0[E(r, 0)]

fr
fz

exp{i(2π/λ)z[1 − (λfr)2]
1/2

}

}︃
cos φ. (6)

As we can see that the Ez component relates to the azimuth angle. On the initial plane, there is
no asymmetry in the distribution of light intensity. However, with the increase of the propagation
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distance z, the intensity distribution of light field will no longer maintain the symmetry due to
the influence of cosφ in Ez component. The asymmetry of intensity distribution will affect the
symmetry of radiant force distribution on a Rayleigh dielectric microsphere. For simplicity, only
the case of azimuth φ= 0 is examined in the following study.

In some cases it may be desirable and appropriate to take the paraxial (small-angle) approxi-
mation in Eq. (4):

(2π/λ)z[1 − (λfr)2]1/2 = (2π/λ)z[1 − (λfr)2/2]. (7)

In addition, the Ez component in Eq. (2) is negligible in the case of paraxial approximation.
Thus, the electric field E (r, z) in the paraxial approximation can be expressed as:

E(r, z) = (1/4π2)H−1
0{H0[E(r, 0)] exp[i(2π/λ)z] exp(−iπλfr2z)}, (8)

The intensity of the CCADBs can be described as follows:

I = |Ex(r, z)|2 + |Ez(r, φ, z)|2. (9)

It is difficult to obtain the analytic expression for the intensity I. Here we use the quasi-discrete
method proposed by Guizar-Sicairos et al. [20] to numerically calculate the Hankel transforms
in Eqs. (3)-(9). The method originally proposed by Yu et al. [21] for evaluating the zero-order
Hankel transform is generalized to high-order Hankel transforms. Compared to the existing
methods, the quasi-discrete Hankel transforms method has been demonstrated to have higher
accuracy and computational efficiency.

3. Propagation characteristics

In this section, we study the dynamic characteristics of nonparaxial propagation of CCADBs
through numerical examples, such as focal length, focal depth, and K-value. Especially, we inves-
tigate the influence of different chirp parameters on propagation dynamics. In subsequent studies
and calculations, we first assume a= 0.2, b= 0.15, c= 0, w0= 10 µm, r0= 50 µm, λ= 632.8 nm,
and the incident power is set to 1 W. Unless otherwise specified, these assumed parameters will
remain constant.

3.1. Distribution characteristics of light intensity on the initial plane

Figure 1 shows the light intensity distribution of different derivative orders of CCADBs on the
initial plane. As we can see that the intensity distribution of the CCADBs has circular symmetry,
and the areas where light energy is concentrated are gradually transferred to the outer ring with
the increase of the derivative order n. In order to better observe the intensity characteristics,
the one-dimensional intensity distributions along the radial direction are also shown in Fig. 2.
It can be clearly found that as n increases, the radius of the region with zero light intensity in
the middle of the beam gradually increases, and the bright and dark rings become more and
more dense. Except for the 0th-order differential beam, the maximum intensity of the CCADB
gradually increases with n goes up.

3.2. Focal length, focal depth, and K-value

The focal length, focal depth, and K-value of CCADBs are three important physical quantities
in optical tweezers and particle manipulation applications. The focal length and focal depth
determine the working distance and range, respectively. The K-value represents the autofocusing
ability of CCADBs, and it determines the trapping stiffness of the particle. Usually, the CCADBs
used in optical tweezers and particle manipulation must be small enough to capture and manipulate
a specific particles. Therefore, the propagation dynamics of the CCADBs need to be studied
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Fig. 1. Intensity distribution of different derivative orders of CCADBs on the initial plane.

Fig. 2. Intensity distribution along the radial direction on the initial plane.
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based on the nonparaxial propagation theory. The paraxial propagation model is no longer
sufficiently accurate in this case.

To better compare and analyze the propagation dynamics of CCADBs in the case of paraxial
and nonparaxial propagation models, we show the side-view intensity distribution along the
propagation direction in Fig. 3. As seeing, the intensity profiles in both cases are obviously
different. Although the intensity distribution under these two models shows abruptly autofocusing
effect, the light intensity along the optical axis shows serious oscillation in the paraxial model
while the oscillation disappears in the nonparaxial model. The difference of intensity profile is
mainly attributed to the influence of the Ez component. In addition, when the derivative order n
is the same, the size of the focus spot along the transverse direction is approximately equal in the
paraxial and nonparaxial model. The effect of n value on the transverse focusing spot size is very
small. The result can be clearly seen from the inset image of each subimage in Fig. 3, where all
inset images are marked by the white dotted line box. And these inset images correspond to the
effect that the focusing spot profile is magnified 4.36 times in equal proportions, respectively.

The distance from the initial plane (z= 0) to the position of maximum intensity is defined as
the focal length of CCADBs. According to the calculation results, the focal lengths in the paraxial
model are 261.9, 261.7, 261.7, and 261.7 µm, respectively, as the derivative order n increases
from 0 to 3. In terms of the numerical size, the focal lengths are nearly independent of the order
of derivative n, which is in agreement with the conclusion in the literature [5]. Corresponding
to the nonparaxial model, the focal lengths are 237.3, 233.5, 232.1, and 230.9 µm, respectively.
It shows that the focal length decreases gradually as n increases. Moreover, the focal lengths
obtained by the nonparaxial model are significantly shorter than that obtained by the paraxial
model. So, the differential order n can be used to elastically regulate the focal length when the
CCADBs are applied to particle manipulation and other cases involving nonparaxial propagation.

To assess the focus depth and autofocusing ability of the CCADBs, another physical quantity
named the relative on-axis intensity is defined by the ratio of the on-axis light intensity I (0, z) to
the maximum intensity on the initial plane I0max. Figure 4 presents the relative on-axis intensity
distribution curve with different derivative orders under the paraxial and nonparaxial propagation.
As we can see that in the paraxial model the curves have several peaks with gradually decreasing
intensity, but only a single peak with a long tail in the nonparaxial model. In this paper, the
full width at half maximum (FWHM) of the single peak of the relative on-axis intensity curve
obtained from the nonparaxial model is regarded as the focal depth of CCADBs. Depending on
the calculation results, the focal depths corresponding to the increase of n from 0 to 3 are 88.90,
21.20, 11.95, and 9.12 µm, respectively. This means that the focal depth decreases obviously as
the order of differentiation increases.

In optical tweezers applications, the autofocusing ability can reflect the gradient force or
trapping stiffness of the CCADBs on a dielectric particle to a certain extent. It can be described
by a ratio of K = Ifmax/ I0max, where Ifmax and I0max correspond to the maximum light intensity
at the focal plane and the initial plane, respectively. From the Fig. 4, it can be seen that the
K-value in the nonparaxial model is significantly lower than that of the paraxial model when
the derivative order n is the same. As n increases from 0 to 3, the K-value obtained in both
calculation models increases, which prove that the autofocusing ability is enhanced. Beyond that,
with the increase of n, the K-value obtained by the two kinds of calculation models tends to be
closer to each other. In addition, it is also worth noting that the increase of n value can greatly
increase K-value, which is beneficial to greatly regulating the trapping stiffness of particles in
the application of optical tweezers. Based on the above results, it can be clearly seen that there
are significant differences in the propagation characteristics of the CCADBs in paraxial and
nonparaxial propagation models. Therefore, it is particularly important to study the non-paraxial
propagation characteristics of the CCADBs in the field of optical tweezers and other applications
involving non-paraxial propagation.
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Fig. 3. Side-view intensity distribution along the propagation direction of the CCADBs in
the paraxial and nonparaxial propagation models.
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Fig. 4. Relative on-axis intensity of the CCADBs under paraxial and nonparaxial propaga-
tion.

3.3. Influence of the chirp parameter on propagation dynamics

The chirp factor is a useful physical quantity to control the propagation dynamics of the laser
beam [22–26]. By introducing different chirp quantity (from c1 to c5) in the CADBs, we find the
focal length, focal depth, and K-value can be greatly affected under the nonparaxial propagation
model. Figure 5 shows the relative on-axis intensity distribution curve of the CADBs under
different chirp parameters, where the case of unchirp (c3= 0) modulation is also given again in
order to distinguish the influence of positive chirp and negative chirp.

From Fig. 5, we can obviously see that for the CADBs with any derivative orders (n= 0, 1, 2,
and 3), the negative chirp quantity make the focal position close to the source plane (z= 0), and
the larger the absolute value of the negative chirp is, the closer it is. Through accurate calculation,
we can also find that the focal depth decreases with the increase of the absolute value of the
negative chirp, and the peak section of the curve becomes finer and sharper. According to the
K-value data presented, the negative chirps obviously tend to enhance the autofocusing effect
through compressing the focal length, and the K-value is remarkably increased with the increase
of absolute value of negative chirp.

In stark contrast to the negative chirp above, the relative on-axis intensity evolution of the
CADBs with the positive chirp parameters is in an almost opposite change. With the increase of
chirp value, the focal length of CADBs with different n value becomes longer and the K-value
decreases. According to the change trend of the relative on-axis intensity curve, in fact, it can be
predicted that the autofocusing ability may be completely eliminated when the positive chirp
coefficient increases to a certain extent. The reason for this result can be interpreted as the positive
chirp can prevent the acceleration of the radial profile toward the center position. Compared with
the modulation effect of the derivative order n, the chirp factor has a more delicate regulation
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Fig. 5. Relative on-axis intensity of the chirped CADBs under the nonparaxial propagation.

effect on the optical field propagation characteristics of CADBs. In other words, we can achieve
precise regulation of the capture stiffness of particles by fine-tuning the chirp factor in optical
tweezers applications.

4. Radiation forces of CCADBs on a Rayleigh particle

In this section, we investigate the radiation force of CCADBs on a Rayleigh particle in the
nonparaxial propagation model. The calculation principle of the radiation force are described in
detail, and several numerical examples are performed based on the parameters set in the previous
section, where a= 0.2, b= 0.15, c= 0, w0= 10 µm, r0= 50 µm, λ= 632.8 nm, and the incident
power is set to 1 W.

4.1. Theoretical analysis of the radiation force calculation

Rayleigh dielectric particle can be considered as a point dipole in the light fields. So the Rayleigh
scattering model is used to calculate the radiation force of CCADBs on the Rayleigh dielectric
particle in this paper. The time-averaged version of the Poynting vector is an important and
measurable physical quantity in evaluating radiation force and is given by [27]⟨︂

S⃗(r⃗, t)
⟩︂

t
=

1
2

Re[E⃗ × H⃗] . (10)

Substituting Eqs. (4), (6) into (10), and using the relationship between electric and magnetic
fields, we can obtain the time-averaged version of the Poynting vector as follows⟨︂

S⃗(r⃗, t)
⟩︂

t
=

nε0c
2

|Ex |
2 e⃗z +

nε0c
2

|Ex | |Ez | e⃗x. (11)
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The gradient force Fg and scattering force Fs are two kinds of main radiation force on the
Rayleigh particle. They can be calculated by the following two equations

F⃗g =
2πnmR3

c

(︃
η2 − 1
η2 + 1

)︃
∇(E⃗ · E⃗∗), (12)

F⃗s =
8πnmR6k4

0
3c

(︃
η2 − 1
η2 + 2

)︃2 ⟨︂
S⃗(r⃗, t)

⟩︂
, (13)

where R is the radius of the dielectric particle, η = np/nm, is the relative refractive index of
the particle, nm and np are the refractive index of the particle and the surrounding medium
respectively. k0 is the vacuum wave number, c is the speed of light. Thus, the gradient force and
scattering force of x and z components can be expressed as follows

Fgx =
2πnmR3

c

(︃
η2 − 1
η2 + 1

)︃
∂

∂x
(|Ex |

2 + |Ez |
2), (14)

Fgz =
2πnmR3

c

(︃
η2 − 1
η2 + 1

)︃
∂

∂z
(|Ex |

2 + |Ez |
2), (15)

Fsx =
8πnmR6k4

0
3c
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)︃2

·
nε0c

2
|Ex | · |Ez |, (16)

Fsz =
8πnmR6k4

0
3c

(︃
η2 − 1
η2 + 2

)︃2

·
nε0c

2
|Ex |

2. (17)

In calculation, we assume the surrounding medium is water (refractive index nm= 1.33), and the
dielectric particle is the glass microsphere (refractive index np= 1.59) with a radius of R= 30 nm.

4.2. Radiation forces of the unchirped CADBs on Rayleigh glass microsphere

When the incident power of the unchirped CADBs is set to 1 W, the radiation force exerted on the
Rayleigh glass microsphere along the optical axis can be calculated by using the mathematical
expression: Fz = (Fscat)z + (Fgrad)z. For different derivative order n, the corresponding radiation
force distribution curves are shown in Figs. 6(a)-(d), respectively. Fz value on the black dotted
line is equal to 0. In order to clarify the equilibrium point, we have given a zoomed figure in
the inset, where the curve in the ellipse clearly shows the Fz distribution near the theoretical
mechanical equilibrium position point. The center of the small blue circle inserted in each
subfigure represents the equilibrium point along the optical axis and it is also where the arrow
points.

As seeing from Fig. 6(a), when n= 0, the radiation force generated by CADBs is hardly able to
trap the particle, because the driving force along the optical axis forward is absolutely dominant.
When n increase from 1 to 3, the positions of the equilibrium point are 235.7, 232.4 and 231.1 µm,
respectively, which are slightly shifted in the opposite direction of the beam. In addition, as n
increases, the radiation force Fz is significantly enhanced, and the share of radiation force along
the opposite direction of propagation becomes more and more prominent, which is conducive to
the stable capture of glass microsphere.

The transverse radiation force Fx at the equilibrium point on the optical axis can be calculated
by using the mathematical expression: Fx = (Fscat)x + (Fgrad)x. The corresponding calculation
results are shown in Fig. 7, respectively, where we use the subscript r instead of x, just to be
consistent with the previous statement in the second part of this paper. Unlike the radiant force
Fz, the transverse radiant force Fr exhibits a high degree of symmetry. Similarly, the center of the
small blue circle inserted in each subfigure represents the theoretical mechanical equilibrium
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Fig. 6. Radiation forces on the Rayleigh glass microsphere along the optical axis.

point along the transverse direction. As seeing from Figs. 7(a)-(d), in numerical terms, Fr also
increases as derivative order n increases. This means that the stiffness of the optical trap can be
enhanced by choosing the proper derivate order.

4.3. Radiation forces of the chirped CADBs on Rayleigh glass microsphere

The chirp parameters can modulate the light field distribution of CADBs, so we investigate
the influence of different chirp on the radiation force. Here the same chirp factors as before
(c1= -2, c2= -1, c3= 0, c4= 1, and c5= 3) are used in numerical calculation, and c3= 0 indicates
that CADB is unchirped, and its function here is to clearly distinguish the changes of radiation
force under the modulation of positive and negative chirps. Figure 8 shows the radiation force
distribution curves of different differential orders of CADBs on Rayleigh glass microsphere along
the axis, under the different chirp factors. Especially, when n= 0, the radiation forces Fz are
mainly forward thrust, and the forward thrust gradually decreases with the increasing of chirp
factor from negative to positive. In this case, in fact, it is almost impossible for the microsphere to
be stably trapped along the axial direction. As n goes from 1 to 3, the radiation force Fz shows an
order of magnitude increase. In addition, we can also clearly see that the share of radiation force
in the opposite direction of the optical axis become more and more prominent, which is more
conducive to stable particle trapping. For any derivative order (n= 1, 2, 3), the equilibrium point
is moved towards the direction of beam propagation and the magnitude of the radiation force is
also reduced with the chirp factor changes from negative to positive. Meanwhile, the share of
radiation force in the opposite direction of the optical axis gradually decreases as the chirp factor
changes from -2 to 3. This means that if the chirp factor continues to increase, there will be no
photomechanical equilibrium and the radiation force Fz will be unable to capture the particles.

For n= 0, the radiation force of the CADBs along the optical axis is not enough to capture the
Rayleigh microsphere. Here we only investigate the transverse radiation force in the case of n= 1,
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Fig. 7. Transverse radiation force at the equilibrium point on the optical axis.

Fig. 8. Radiation forces along the optical axis with different chirp factor.
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2, and 3. Figure 9 shows the transverse radiation force at the equilibrium point on the optical axis
for different chirp factors. As seen, the transverse radiant force curves are basically symmetric
with respect to the equilibrium point on the optical axis. In theory, the transverse photomechanical
equilibrium point of the microsphere is consistent with the longitudinal equilibrium point. With
the increase of derivative order n, the transverse radiation force increases by orders of magnitude.
In addition, we can see that with the same n value, the transverse radiation force gradually
weakens with the chirp factor increasing from -2 to 3, which is not conducive to stable capture of
the microsphere. Therefore, both chirp parameter and derivative order have significant influence
on the trapping force of microsphere.

Fig. 9. Transverse radiation force at the equilibrium point with different chirp factor.

4.4. Stability analysis of microsphere capture

There are several necessary conditions for the stable trapping of glass microsphere. First, the
backward longitudinal gradient force must be sufficient to overcome the forward scattering force.
That means that the magnitude of Fz and Fr has a position equal to zero along the optical axis
and the transverse direction, respectively, which is satisfied in our calculations, except n= 0.
Second, Fz and Fr must be larger than the gravity of the particle. In our case, the gravity of
the glass microsphere with a radius of 30 nm and a density of (2.4∼2.8)× 103 kg/m3 is about
(2.7∼3.1)× 10−6 pN, which is also fulfilled. Third, the Brownian force must be much smaller
than the trapping forces of the CADBs. The magnitude of the Brownian force can be expressed as
FB = (12πηRkBT)1/2, where η is the viscosity of the water (η = 7.977× 10−4 Pa·s when T = 300 K),
R is the radius of the glass microsphere and kB is the Boltzmann constant. Then we get the
magnitude of the Brownian force FB = 1.933× 10−3 pN. Compare the Brownian forces with the
radiation forces Fz shown in Figs. 8, we can infer that when n= 0 and 1, the radiation force along
the optical axis cannot achieve stable trapping of glass microspheres. When n= 2, the Brownian
forces and radiation forces Fz are of the same order of magnitude, so the capture along the optical
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axis can be achieved, but the captured glass microsphere is prone to escape from the interference
by other factors. When n= 3, the radiation forces Fz are much larger than the Brownian force, so
it is easy to realize the stable capture of glass microspheres along the optical axis. Based on
the similar analysis, we can see from Fig. 9 that for n= 1, the magnitude of transverse radiation
force Fr is comparable to that of the Brownian force, so it is also difficult to achieve stable
capture effect. For n= 2 and 3, the transverse radiation forces Fr are significantly larger than the
Brownian force, so the stable capture can be achieved easily. Besides the derivative order n, we
also clearly find that chirp factor is another important physical quantity to regulate the radiation
force Fz and Fr to a certain extent. Thus, the trapping stability of Rayleigh glass microsphere can
be improved by changing the differential order or adjusting the chirp factor.

5. Conclusion

In conclusion, we have studied the nonparaxial propagation dynamics of the CADBs with different
derivative orders and chirp parameters. The nonparaxial propagation dynamics are obviously
different from those in the paraxial approximation model, which indicates that the study of
nonparaxial propagation dynamics of CADBs is very important for its practical applications
in optical tweezers and other aspects. The derivative order and chirp factor of the beam have
significant and subtle effects on the nonparaxial propagation dynamics, respectively. Thus, the
derivative order and chirp factor can be used to coarse and fine tune the capture effect of the
beam on the Rayleigh microsphere respectively. It is worth noting that not all derivative order
CCADBs can achieve stable trapping effect of Rayleigh microsphere, and it is necessary to
choose suitable derivative order and chirp factor in practical application. Our research work will
promote the more precise and flexible use of circular Airy derivative beams in optical tweezers,
laser processing and other fields.
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