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A novel method for controlling the chromatic dispersion of uniform fiber Bragg gratings (FBGs) in helical
multicore fiber (HMCF) is proposed and experimentally demonstrated. By precisely manipulating the 3D shape of
the grating, including local curvature and bending orientation, varying strain gradients are induced, leading to
tunable bandwidth and group delay. FBGs were inscribed in HMCF using the femtosecond laser point-by-point
(PbP) technique. When the grating was shaped into an arc with a radius of 1 cm, a tuning bandwidth of 8.3

nm and a dispersion of 5.7 ps/nm were achieved. Furthermore, a misalignment fabrication method is introduced,
ensuring that gratings in different cores exhibit consistent tunable dispersion characteristics through curvature
adjustment. This proposed method offers significant potential for chromatic dispersion control in optical
transmission systems based on multicore fiber.

1. Introduction

The use of multicore fiber (MCF) for space division multiplexing
(SDM) is a significant approach to increasing transmission capacity in
optical networks [1,2]. Following Moore’s Law, future expansions in
transmission capacity are expected. In addition to SDM, single-mode
fiber (SMF) transmission capacity has been enhanced by leveraging
various multiplexing techniques, such as polarization and wavelength
division multiplexing (WDM) [3,4]. Notably, in 2024, a record-breaking
data rate of 402.2 Tb/s was achieved using WDM in SMF [5]. A com-
bination of SDM and WDM has been employed to further sustain the
growth in optical transmission system capacity [6,7].

In WDM systems, dispersion plays a critical role. On one hand, fiber
dispersion leads to pulse broadening and inter-symbol interference,
reducing the communication capacity. On the other hand, over long
transmission distances, dispersion exacerbates pulse broadening,
thereby limiting transmission range. Therefore, dispersion
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compensation is essential. Chirped fiber Bragg gratings (CFBGs) have
been widely adopted as dispersion compensators due to their fiber
compatibility, compact size, low nonlinearity, and minimal insertion
loss [8,9]. Various techniques have been proposed for tuning CFBG
dispersion, including thermal tuning via heaters [10,11], tapered fiber
methods [12,13], and symmetric bending of flexible cantilever beams
[14-17]. However, all these tunable dispersion compensators have been
designed for use with SMF.

FBGs can be inscribed in MCF using ultraviolet (UV) laser or
femtosecond laser methods. The traditional approach relies on UV laser
combined with a phase mask (PM) to inscribe uniform or chirped grat-
ings in MCF [18-21]. Although this method is technically mature and
offers advantages such as low insertion loss and minimal polarization-
dependent loss, it is prone to shadowing effects due to UV absorption
and lensing effect, which make it difficult to fabricate consistent gratings
in multiple cores [18,19]. Additionally, the requirement for hydrogen
loading and annealing before and after the process adds complexity and
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time to the fabrication procedure [18,20,22].

In contrast, femtosecond laser direct-writing techniques, including
point-by-point (PbP), line-by-line (LbL), and plane-by-plane (Pl-b-Pl)
methods, offer a more flexible approach to grating inscription [23-26].
These methods enable high-precision control of 3D translation stages to
inscribe gratings with varying Bragg wavelengths and complex spectral
designs into different types of optical fibers. The fiber coating layer re-
mains intact during the inscription process, and the fiber does not
require hydrogen-loading, thereby preserving its mechanical strength.
In 2018, A. Donko et al. successfully inscribed four uniform third-order
FBGs in a seven-core fiber using the PbP method [27]. In 2019, Alexey
Wolf et al. used the same method to inscribe uniform gratings in a helical
seven-core fiber for vector bending sensing applications [28]. However,
no studies have focused on the chromatic dispersion based on FBGs in
MCEF or the tunable dispersion mechanisms for such gratings.

In this paper, we proposed and experimentally demonstrated a
method for controlling the chromatic dispersion of uniform FBGs in
helical multicore fiber (HMCF). The FBGs were successfully fabricated in
HMCF using the femtosecond laser PbP technique. The 3D shape of the
fiber induces a strain gradient in the uniform gratings located on the
outer core, allowing control over key grating properties such as band-
width and group delay via adjustments to the local curvature and
bending orientation. We systematically investigate the effects of
bending orientation and curvature on the dispersion characteristics of
the gratings in HMCF. Reflection spectra and group delay were
measured by a coherent optical frequency domain reflectometry
(OFDR). A tuning bandwidth of 8.3 nm and dispersion as low as 5.7 ps/
nm were achieved by shaping the grating into an arc with a 1 cm radius.
Furthermore, we proposed and demonstrated a misalignment fabrica-
tion method to ensure that gratings in different cores exhibit consistent
tunable dispersion characteristics, independent of bending orientation,
and driven solely by curvature.

2. Fabrication and principle
2.1. Fabrication

As shown in Fig. 1, a femtosecond laser (Pharos PH1, Light Con-
version) with a pulse width of 290 fs, central wavelength of 514 nm, and
repetition rate of 200 kHz was used to inscribe uniform FBGs in a HMCF
with a polymer coating layer via the PbP method [29]. This is beneficial
for achieving higher-quality FBG. To precisely control the laser energy, a
half-wave plate (HWP) in combination with a Glan prism was employed.
The laser beam was focused by a 100 x oil-immersion objective lens (NA
= 1.33) and then directed into the fiber core. The HMCF was mounted

CCD

1

Uniform™

Glan
Prism HWP

Optics and Laser Technology 183 (2025) 112367

on a high-precision three-dimensional translation stage, secured with
fiber holders. This stage allowed accurate movement of the fiber along
the x-, y-, and z-axes, ensuring precise positioning relative to the laser
focus. The OFDR has proven versatile in both time- and frequency-
domain metrology, effectively analyzing FBG in the spectral and im-
pulse response domains [30]. In this study, a commercial optical fre-
quency domain reflectometer (OFDR) (LUNA, OBR4600) was used to
measure the spectrum and group delay (GD) of each inscribed grating in
the HMCF.

The grating fabrication process in HMCF followed these steps: In step
1, a section of HMCF with the polymer coating layer was secured using a
pair of fiber holders on the 3D translation stage. A fan-in/out (FIFO)
device was used to connect the SMF to one core of the HMCF, and the
corresponding channel of the FIFO was linked to the OFDR. In step 2, the
HMCF was carefully translated along the y- and z-axes to align the laser
focus with the center of one of the fiber cores. In step 3, the three-
dimensional coordinates of each point were calculated based on the
geometric parameters of the HMCF and the period and length of the
grating. The translation stage was then moved to the calculated co-
ordinates, triggering the femtosecond laser to inscribe the grating.

In theory, if the precision of the translation stage is sufficiently high,
the grating period can be set to very small values, allowing for the
fabrication of chirped gratings with a wide range of chirp rates. How-
ever, in practice, the minimum achievable period is constrained by the
translation stage’s precision. To achieve finer tuning, small strains could
be applied to the gratings, enabling further period modulation. By
leveraging the relationship between the strain on the outer core and the
3D shape of the HMCF, a uniform FBG in the outer core can acquire
versatile chirped characteristics.

2.2. Principle

Due to its circular cross-section and uniform density, MCF can be
modeled as a linear Kirchhoff rod, with its mechanical behavior under
bending governed by Euler-Bernoulli beam theory [31]. Specifically, the
outer core of the HMCF is twisted around the central core with a certain
pitch, causing the angle offset of the outer core to continuously change
along the fiber axis. When the fiber is bent, as illustrated in Fig. 2(a), the
strain in the outer core, denoted as ¢;, is expressed as:

2r
& :Koricos(ﬁbfﬂ)fis) (@))

where r; is the radial offset of the outer core from the fiber center, 0?
is the angular offset from the local axis to the core at the initial position,
h is the intrinsic twist pitch of the fiber, « is the curvature of the fiber at
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Fig. 1. Experimental setup for inscribing uniform FBGs in the HMCF using the femtosecond laser PbP technology, where an OFDR was used to measure spectrum and

group delay of FBG.
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Fig. 2. (a) Schematic of a bending HMCF. Simulated strain distribution of HMCF under (b) different bending orientation and (c) curvature radius. (d) Simulated

characteristics of a uniform grating under the strain gradient (I).

the arc length s, and 0, is the bending orientation. As a result, the cur-
vature and bending orientation define the fiber’s 3D shape, inducing
strain gradients along its length.

The strain distributions of the HMCF under different curvature and
bending orientation were simulated. The HMCF used in this study con-
sists of a central core and six outer cores arranged in a regular hexagon
pattern. The geometrical parameters include a twist pitch of 15.4 mm
and a core-to-core spacing of 35 ym. Strain distributions were simulated
for a curvature radius of 2 cm, with bending orientation ranging from
0° to 360°, are shown in Fig. 2(b). While the maximum and minimum
strain values remain constant, the stain profile shifts horizontally as the
bending orientation changes. Additionally, strain distributions were
simulated for a fixed bending orientation of 0° and curvature radii
ranging from 1 cm to 3 cm, as shown in Fig. 2(c). In this case, the profile
does not shift, but the maximum strain decreases as the curvature radius
increases. When the fiber is straight, the strain is zero, resulting in no
strain gradient. Thus, for a uniform grating under varying curvature and
orientation, the grating period is no longer constant but varies along
different positions of the fiber. When the grating is located in a region
with a monotonically varying strain, such as regions (I) or (II) in Fig. 2
(b), the Bragg resonance wavelength can be described as:

Ias) = 2engreo(1+¢s)) @

where A, is the period of the uniform grating, n. is the effective
reflective index of the fundamental mode in the grating region, and ¢;(z)
is the strain at position s along the grating.

Using coupled-mode theory and the transfer matrix method, the
reflection characteristics of the uniform grating under strain gradient (I)
were simulated. The parameters for this simulation included a grating
pitch of 2.067 ym, a grating length of 7.5 mm, a bending orientation of
0°, a curvature radius of 2 cm, a refractive index of 1.502, and a
refractive index modulation of 2.5 x 10~*. Under strain gradient (I), the
grating period monotonically decreased from 2.072 pm to 2.065 pm. The
calculated reflection spectrum and group delay, shown in Fig. 2(d),
confirmed the presence of a chirped fiber Bragg grating. It is important
to note that both the bending orientation and curvature are constant

along the fiber, resulting in a two-dimensional shape. Furthermore, the
continuous variation in the bending orientation and curvature can
provide a 3D shape. This allows for diverse strain distribution and
chirped characteristics to be achieved by designing the 3D shape of the
fiber.

3. Results and discussion
3.1. Experimental and measurement setup

The experimental setup for chromatic dispersion control and the
simplified OFDR-based demodulation system are shown in Fig. 3. In the
experiment, seven uniform gratings were inscribed at the same position
within the HMCF. Each grating had a period of 2.067 pm and a length of
7.5 mm. The tunable chirped characteristics of the FBGs were adjusted
using the setup shown in Fig. 3(b). The HMCF was fixed with a pair of
fiber rotators with a scale interval of 2°, and the gratings were embedded
into a semicircular groove. To adjust the bending orientation, both
holders were rotated simultaneously but in opposite directions. When
the upper rotator was turned clockwise, it followed the spiral direction
of the HMCF. The gratings were placed into grooves of varying radii to
change the curvature.

The reflected spectrum and GD of an FBG were measured using the
OFDR system. The principle of OFDR-based demodulation system is
illustrated in Fig. 3(a). A tunable laser source was employed, sweeping
from 1525.0 nm to 1610.2 nm at a rate of 25 nm/s. Both P-polarized and
S-polarized signals reflected from the FBG were collected using a po-
larization diversity acquisition device. The parameters of the FBG were
extracted as follows: Firstly, the distribution of the FBG in distance
domain was obtained by applying a fast Fourier transform (FFT) to the
collected time-domain data. Then, the center position of the FBG was
located based on the high reflection intensity in the distance domain.
With the center position identified, and using a window length equal to
the grating length, the reflection intensity of the grating was multiplied
by a Hamming window. Applying an inverse fast Fourier transform
(IFFT) to this data provided the reflected spectrum of the FBG.
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Fig. 3. (a) Schematic of simplified OFDR-based demodulation system. TLS: tunable laser source; PC: polarization controller; BPD: balanced photo-detector; PBS:
polarization beam splitter; OSW: optical switch. (b) Experimental setup for chromatic dispersion control.
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Fig. 4. Measured reflected spectra and group delay of the gratings in (a) Core-1, (b) Core-2, (c) Core-3, (d) Core-4, (e) Core-5 and (f) Core-6 using OFDR system,
when the bending orientation was changed from —180° to 180°.
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Meanwhile, the GD was calculated in spectral domain using the
following formula:

A{is(v)-i:(u+Ay)+ip(u) .i;(l/+Al/)} @
= Av

where is(v) and i,(v) represent the complex reflectivity at the instanta-
neous frequency v for P-polarized and S-polarized signals, respectively.
Av is the frequency resolution and the symbol ~{W} represents an
operation that calculates the phase of the complex data.

3.2. Experimental results and discussion

The influence of the bending orientation on the reflected spectrum
and GD was investigated, and the results are shown in the Fig. 4. The
HMCF was embedded into a concave groove with a 2.5 cm radius, and
two rotators were used to change the bending orientation. Two rotators
were turned clockwise and counterclockwise, respectively, to vary the
bending orientation from —180° to 180°. Gratings in the seven cores
were measured every 30° using the OFDR system. It is important to note
that the bending orientation where the grating in Core-1 exhibited the
widest spectrum was defined as 0°, corresponding to a monotonically
increasing strain gradient.

As shown in Fig. 4, when the fiber was straight, the periods of all
seven gratings remained constant, and they behaved as typical Bragg
gratings with a linewidth of approximately 0.28 nm. However, when the
fiber was bent into arcs with different curvatures, the spectra of the
gratings broadened, displaying characteristics of CFBG. Specifically, at a
bending orientation of 0°, the FBG in Core-1 had a bandwidth of 2.70 nm
and a negative dispersion of —16.8 ps/nm. Conversely, at a 180°
bending orientation, this FBG exhibited a positive dispersion of 16.2 ps/
nm, with the same bandwidth. For other bending orientations, the flat
spectrum transitions to a sloping profile, resulting in an asymmetrical
shape where one side rises while the other side decreases. This obser-
vation also suggests that, to ensure the grating remains within the
monotonic strain region and exhibits chirped characteristics, we can
shorten the grating length to mitigate the impact of the precision of the
rotator. Because the included angle of two adjacent cores is 60°, the FBG
in different cores did not exhibit identical characteristics. This angular
offset resulted in a non-monotonic strain gradient. For instance, as
shown in Fig. 4(b), at a bending orientation of 60°, matching the
included angle of Core-1 and Core-2, the dispersion characteristics of the
FBG in Core-2 aligned with those of Core-1. Similarly, when the bending
orientation equaled the included angle of other cores and Core-1, their
dispersion characteristics also matched those of Core-1, as shown in
Fig. 4(c-f). This indicates that uniform gratings inscribed at the same
position in the fiber do not share identical tunable dispersion
characteristics.

It is worth noting that the group delay curves at bending orientations
of 0° and 180° were not perfectly aligned within the same bandwidth.
This is due to temperature fluctuations during the measurement period,
which cause a shift in the tuning range. The shape of the fiber did not
affect the resonance wavelength of the FBG in the central core (Core-7);
only temperature changes caused the wavelength shift. The spectrum of
the FBG in the central core was monitored throughout the experiment.
As shown in Fig. 5(a), the wavelength shift spanned a range of
approximately 0.4 nm, which corresponds closely to the shift in the
tuning range.

The influence of curvature on the reflected spectrum and GD was also
studied, and the results are shown in Fig. 6. The HMCF was embedded in
concave grooves with radii of 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, and 3.0
cm, respectively. Since the characteristics of FBG depend on both the
angular offset of the cores and the bending orientation, we focused
solely on the effect of curvature in this experiment. The fiber was rotated
such that the grating in Core-6 experienced a monotonically decreasing
strain gradient.

Optics and Laser Technology 183 (2025) 112367
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Fig. 5. Measured reflected spectra of the gratings in central Core-7 (a)
throughout the bending orientation changing process and (b) curvature
changing process.

As the curvature radius decreased, the reflected spectra of the grat-
ings broadened, and the slope of the group delay curve flattened. Fig. 6
(a) shows the experimental results of the reflected spectra for the FBG
with varying curvature radii. With a curvature radius of 1.0 cm, the
bandwidth of the grating increased by 8.3 nm, and its reflection
decreased by ~7.9 dB at the central wavelength of 1553.257 nm. Fig. 6
(b) shows the measured GD of the FBG for different curvature radii.
Linear fitting was applied to the measured GD, and the R2 values
exceeded 0.98. The slope of the fitted curves, representing the disper-
sion, is shown in Fig. 6(c). As the radius increased, the grating’s
dispersion rose from 5.7 ps/nm at 1 cm to 19.5 ps/nm at 6 cm.

Furthermore, a misalignment fabrication method was proposed to
ensure that gratings in different cores exhibit identical tunable disper-
sion characteristics, regardless of the bending orientation, but only
related to the curvature. According to the geometric characteristics of
the HMCF, gratings in different cores were offset by a length AL ensuing
consistent angular offset at the local coordinate:

Y

Asz—”

@

where A9 is the included angle of two cores. As shown in Fig. 7(a),
two uniform gratings were inscribed in Core-2 and 5, respectively, with
an offset of h/2. The grating length was 4.4 mm and the offset was 7.7
mm. A section of the fiber was then wound into a ring, and the bending
orientation was adjusted by repositioning the gratings on the ring, as
shown in Fig. 7(b). The results, shown in Fig. 7(c-d), demonstrated that
these two tunable FBG had nearly identical tuning ranges and disper-
sion. Linear fitting of the data revealed that the dispersion for the two
gratings was —6.1 ps/nm and —7.2 ps/nm, respectively.

Table 1 lists the performance of the proposed CFBG and some CFBG
reported in the literature. While the fabrication of tunable and non-
tunable chirped gratings in SMF was well-established, the realization
of CFBG in multicore fibers is still in the early stages of research. The
proposed tunable CFBG, fabricated using femtosecond laser technology,
was the first of its kind. Compared to the UV laser-based approach, the
method proposed in this paper is more flexible, as it does not require
custom phase masks. In comparison with parameters reported in the
literature, the chirped grating in this work demonstrates comparable
performance, with the added benefit of tunability.

4. Conclusion

In summary, we proposed and experimentally demonstrated a simple
method for controlling chromatic dispersion using uniform FBGs in
HMCF. By precisely adjusting the 3D shape of the grating, i.e., the local
curvature and bending orientation along the fiber, we achieved effective
control over key properties of the uniform FBGs, such as bandwidth and
group delay. Additionally, we introduced a misalignment fabrication
method to ensure that gratings in different cores exhibit consistent
tunable dispersion characteristics when the fiber is bent into the same
shape. In this paper, we focused solely on the tunability of the chirped
characteristics of the uniform grating in HMCF induced by its 3D shape.
In future work, twisting will also be investigated as a potential tuning
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Table 1
Performance comparison with CFBG reported in the literature.

Fiber type Manufacturing method Tunability Grating length Bandwidth (nm) Dispersion (ps/nm) Refs.

SMF UV-laser/ Tunable 11 cm 0.5-7.5 - [17]
uniform PM

SMF Fs-laser/ Non-Tunable 45 mm 4.7 — [32]
chirped PM

SMF Fs-laser/LbL Non-Tunable 10 mm 1.5-7.7 - [33]

MCF UV-laser/ - 7 mm 1.75 - [21]
chirped PM

HMCF Fs-laser/PbP Tunable 7.5 mm 0.28-8.3 5.7-19.5 This work

method. This proposed dispersion tuning method holds potential for
applications in optical transmission systems utilizing multicore fiber.
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