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Abstract—We introduce a hydrogen sensor based on a beam-
structured optomechanical resonator engraved by the FIB (focused
ion beam) in a graphene-Au-Pd nanofilm, suspending on the tip of
the optical fiber. The hydrogen concentration can be measured by
monitoring the resonance frequency change which attribute to the
mechanical stress changes associated with hydrogen. The sensor
responds linearly in a wide concentration range of from 0 to 4.5%.
The sensitivity of proposed sensor can be calculated to be 95.7
kHz/% with a shift of 445.11 kHz. Due to its excellent repeatability
in the measurement process, such a sensor may be used practically
for hydrogen gas with high concentrations.

Index Terms—Hydrogen sensor, optical fiber sensor,
optomechanical resonator.

I. INTRODUCTION

HYDROGEN as a clean, efficient and renewable energy
source has been widely used in various fields such as

aerospace [1], automotive [2], electronics and petrochemicals
[3]. In nature, 4%-4.5% of hydrogen can explode when exposed
to a spark, causing major safety accidents and threatening the
safety of people and property [4]. Hydrogen monitoring is of
great significance in various domains since it affects humans
negatively as well as favorably. To achieve this goal, in the
past few decades, a range of sensors have been developed
based on electrochemical [5], microelectromechanical resistive
[6], and optical mechanisms [7]. Fiber-optic hydrogen sensors
have gained more attention than commercial hydrogen sensors
with electronic sensing elements due to their inherent benefits,
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including the capability to prevent electromagnetic interference,
minimal safety hazards and ability to perform remote measure-
ments. Among these sensors, Palladium (Pd) is frequently used
as the catalyst with a high affinity towards H2 and great reversible
absorption of hydrogen, leading to the formation of palladium
hydride (PdHx). PdHx can exist in two distinct solid phases,
α- and β-hydride, which depend on the hydrogen content, tem-
perature and pressure. When the Pd in the coating comes into
contact with hydrogen, the Pd cover layer expands in volume
and stretches the fiber, resulting in changes in the parameters
of the optical signal and thus reflecting changes in hydrogen
information, which has the advantage of a large measurement
range and high sensitivity.

Mechanical modes of resonators can be driven using elec-
trical methods by Micro- and Nano-electromechanical systems
(MEMS and NEMS). These resonators have shown tremendous
potential in the detection of mass [8], [9], force [10], [11], gas
[12] and magnetic [13]. Nevertheless, the described mechanism
has several associated drawbacks, such as nonlinear output, short
circuit potential, and the need for a high drive voltage. Optical
driving based on modulating optical power coupled directly to
the resonator have been proposed as an effective approach to
address above problems. Numerous mechanical resonators have
been developed for sensing purposes, utilizing optical driving
and readout systems. These resonators include optomechanical
magnetometers [14], [15], optomechanical accelerometers [16],
and displacement sensors [17], [18].

In this paper, supported by our previous works [4], [19], [20],
A fiber-optic hydrogen sensor with a novel structure is proposed
and experimentally investigated. The fiber-optic Fabry-Perot
interferometer was fabricated by splicing a short hollow-core
fiber (HCF) to a single-mode fiber (SMF). The end face was
then sensitized by using a beam-shaped mechanical resonator,
which was made of a layered graphene-Au-Pd nanofilm. For
analysis of mechanical vibration, a sine-sweep modulated laser
was used for actuation while a continuous wave laser was used
for detection. The experiment revealed that Pd films could
convert lattice expansion into metal hydride when exposed
to hydrogen reversibly, which leads to frequency shifts. Ac-
curate determination of hydrogen concentration was achieved
through measurement of the shift in resonance frequency. The
sensing platform is solely constructed from integrated opti-
cal fibers, with all-optical components for actuation and mea-
surement, making it highly resistant to any electromagnetic
interferences.
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Fig. 1. (a) Structure schematic diagram of the proposed hydrogen sensor. Inset: Reflection spectrum of Graphene-Au-Pd nanofilm Fabry-Perot interferometer.
(b) SEM image of the beam-film resonator. (c) The height profile of Au film. (d) The height profile of Pd film.

II. SENSOR FABRICATION AND PRINCIPLE

Fig. 1(a) is the structure schematic of the proposed sensor. A
Fabry-Perot interferometer (FPI) is formed by the beam-shape
composite film and the end face of the SMF. The reflection
spectrum is provided in the inset. Its fabrication involves several
steps. Firstly, a section of HCF with an internal diameter of 40
μm was fused to an SMF end face using a commercial fusion
splicer. The HCF used had a well-cleaved end face and a length
of 30–50μm which contributes to low insertion losses. Secondly,
a wet transfer technique was employed to transfer a multilayer
graphene membrane to the end of HCF. The suspended graphene
was then coated with a layer of Au film via magnetron sputtering
to enhance the reflectivity. Then, a beam shape was carved into
the suspended film by employing FIB technique. Fig. 1(b) dis-
plays the beam-shape diaphragm by the SEM (scanning electron
microscope), fabricated to be approximately 40 μm in length
and 15 μm in width. Finally, a Pd film was deposited onto the
graphene-Au beam diaphragm for hydrogen sensing. As shown
in Fig. 1(c), (d), the thickness of gold film and Pd film was
characterized by atomic force microscope (AFM) to be 20 nm
and 21 nm, respectively.

The Pd on the beam-film undergo lattice expansion during
reversible hydrogenation, which leads to a frequency shift in
spectrum. Upon hydrogen release, the stationary regions of the
beam-film minish, exerting longitudinal compressive stress on
the suspended graphene-Au-Pd film and leading to decreased
resonance frequencies. For a beam-film with a length of L and
a thickness of t, its fundamental resonant frequency f0 can be

expressed as [21]

f0 =

√√√√(A
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The E and ρ denote the Young’s modulus and mass density
of the beam, respectively. The S stands for the tension per unit
width of the beam, while A takes the value of 1.03. The relative
variation of the resonant frequency can be expressed as follows
[12]:
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where, σ denotes the longitudinal tensile stress in the composite
film, L represents the length and t represents the thickness. E is
the Young’s modulus of the material.

III. HYDROGEN MEASUREMENT AND DISCUSSION

The experimental setup is illustrated in Fig. 2. An optical
spectrum analyzer (OSA), a broadband source (BBS), and a
circulator were used for measuring the FPI spectrum at port 1.
The hydrogen concentration control setting is shown on the right
side of Fig. 2. Compressed nitrogen and hydrogen generator
were supplied, with the volume ratio being regulated by two
gas mass flow controllers (MFC) and a personal computer (PC).
The full control range for nitrogen flow control and hydrogen
flow control is 1000 SCCM (standard cubic centimeters per
minute) and 500 SCCM, respectively. A mixture of nitrogen and

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 29,2024 at 06:47:25 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: OPTICALLY DRIVEN NANO-BEAM RESONATOR FOR HYDROGEN SENSING 2613

Fig. 2. Schematic of the experimental setup. The sensor’s spectral and mechanical frequency characteristics are measured through port 1 and port 2, respectively.
The hydrogen concentration is controlled using the right side of the device.

hydrogen with a specific volume ratio flowed through a plastic
pipe (inner diameter of 3 mm) into a gas chamber. A proposed
sensor was placed on the plastic tube to monitor the variation
of hydrogen concentration. During the experiment, a constant
total gas flow of 1000 SCCM was maintained. The sensor is a
mechanical resonator that can be driven and measured via port 2:
The laser wavelength λ1 was modulated using an electro-optic
modulator (EOM) with a center wavelength of 1549 nm, and
driven by a sine-sweep signal with a frequency ranging from
10 kHz to 3000 kHz. The modulated λ1 transmitted through a
9:1 coupler and circulator to reach the FPI, where it actuated
the Graphene-Au-Pd film to generate mechanical vibration. The
probe laser wavelength λ2 was set to 1540.4 nm, which was close
to the half-maximum of the optical resonance (see Fig. 1(a)
inset). Upon passing through the coupler and circulator, laser
wavelength λ2 was reflected by the composite film, and was
subsequently detected by a photoelectric detector (PD) while λ1

was blocked by the bandpass filter. The Nano-film resonator,
through its opto-mechanical vibration, was able to modulate the
phase difference between the reflected beam of light from the
optical fiber end face and the thin-film, thus modulating the
reflected light intensity of λ2. The obtained signal was further
analyzed via a frequency spectrum analyzer (FSA) to determine
the frequency properties of the optomechanical Nano-film res-
onator. The hydrogen concentration used during the experiment
ranges from 0% to 4.5%.

Fig. 3 shows the mechanical frequency properties of the op-
tomechanical resonator. Two mechanical resonant modes were
observed in the range of 1200 kHz ∼ 2100 kHz including the
fundamental resonant mode (@1472.4 kHz) and the second-
order resonant mode (@1871.6 kHz). The vibration modes of
the two modes were simulated using COMSOL Multiphysics.
It should be noted that the Q-value of the first-order resonant
frequency under this structure is significantly higher than that of
the previous trampoline structure [18]. The energy magnitude

Fig. 3. Mechanical resonant frequency characteristics of the proposed sensor.
The vibration mode of the first-order, second-order resonance at 1472.4 kHz and
1871.6 kHz, obtained by finite element simulation is represented, respectively;
Inset: Enlarge view of the second-order resonant peak.

of the resonant peak in the second-order mode is below 1 μw.
The leading reason of this phenomenon may be attributed to the
gradual energy loss suffered by the light passing through the
cavity, due to several factors such as absorption, scattering, and
miscellaneous losses.

By varying the hydrogen concentration at 22 °C, the frequency
response of the sensor was measured. Each measurement was
performed after a 5-minute period to reach absorption equi-
librium. The frequencies of the two modes decrease as the
concentration rises. Fig. 4(a) shows the spectral evolution of the
fundamental mode with the hydrogen concentration increasing
from 0% to 4.5%. For clarity, the shift of the two modes with the
hydrogen concentration is shown in Fig. 4(b). The fundamental
mode and the second-order mode exhibited a blue shift of 445.11
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Fig. 4. (a) Spectral evolution of the fundamental mode with hydrogen concen-
tration; (b) frequency shifts of the two modes versus hydrogen concentration.

kHz and 297.07 kHz, respectively, during the process. The
responses of the two modes are both linear, which are different
from the previous trampoline structure [19]. The sensitivities are
calculated to be 95.7 kHz/% for the fundamental mode and 61.6
kHz/% for the second-order mode.

In order to evaluate the reproducibility of the proposed hy-
drogen sensor, light power changes for three cycles at varying
concentrations were recorded. As presented in Fig. 5(a1)–(a4),
the areas marked by orange and purple indicate that the sensor
was exposed to hydrogen and pure nitrogen, respectively. The
response time and recovery time are defined as the time needed
for 90% of steady-state response to be reached. Fig. 5(c) depicts
the temporal response at 4% hydrogen concentration where its
response time and recovery time were 85 s and 15 s respectively.
Hydrogen atoms occupy more surface sites of Pd at concentra-
tions above 1%, and as a result, the response time is further
delayed when exposed to high levels of H2.

The lower limit detection (LOD) of the proposed hydrogen
sensor can be evaluated by detecting the fluctuation of resonant
frequency over time. In order to record the frequency fluctuations
of two resonant frequencies at 1% hydrogen concentration, we
used a PC to control the FSA operation, recording on average
once a minute for half an hour. The Fig. 6 represents the res-
onant frequency fluctuations results obtained by searching for
peaks through Lorentz fitting of the experimental data [22]. The
fluctuation in frequency could be attributed to the formation of
blisters in the palladium film at hydrogen concentration of 1%,
which may cause plastic deformation of the palladium film. The

Fig. 5. (a1)–(a4) Several cycles of recording the real-time power response of
the sensor exposed to different hydrogen concentrations; (b) temporal response
at the hydrogen concentration of 1%; (c) the response time varies with hydrogen
concentrations.

Fig. 6. Fluctuations in resonant frequencies of two modes at 1% hydrogen
concentration.

standard deviations (σ) of the frequency fluctuations of the two
modes were 6.8 kHz, 4.8 kHz, respectively. The 1σ-LODs of
the two modes were 710 ppm and 770 ppm by calculation.

In order to investigate the effect of longitudinal tensile stress
mentioned above on the thin film, a simulation was conducted
using COMSOL Multiphysics. The simulations utilized the
standard parameters as follows: a density of graphene at 233.33
kg/m3, Young’s modulus at 1000 GPa, and Poisson’s ratio at
0.186 [23]. A horizontal pre-stress was applied to the film,
followed by a gradually increasing longitudinal tensile stress,
the results were illustrated in Fig. 7. The longitudinal tensile
stress change ranging from 0.1 to 0.2 N/m causes a decline in
the resonant frequency of resonator.
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Fig. 7. Relationship of frequency change with longitudinal tensile stress
obtained from COMSOL simulations.

IV. CONCLUSION

In conclusion, an all-optical optomechanical nano-resonator
based hydrogen sensor is proposed. The experimental results
show that as the hydrogen concentration varied from 0 to 4.5%,
linear shifts of 445.11 kHz and 297.07 kHz occurred in the
fundamental and second resonant frequencies, respectively. The
hydrogen sensitivity of the resonator was 95.73 and 65.79 kHz/%
for the first resonant frequency and second resonant frequency.
At a hydrogen concentration of 4%, the response time and
recovery time is 85 s and 15 s, respectively. Furthermore, the
thin film with a small-sized beam structure effectively improves
the Q-value of the first resonant frequency of the resonator,
compared with the previous trampoline structure [19]. The ad-
vantages including compact size, absence of specialized pack-
aging requirements, and all-fiber construction make this device
anticipated in extreme environment hydrogen sensing.
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