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Slit Beam Shaping for Femtosecond Laser
Point-by-Point Inscription of Highly Localized
Fiber Bragg Grating
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and Yiping Wang

Abstract—We propose and experimentally demonstrate a slit
beam shaping method for femtosecond laser Point-by-Point (PbP)
inscription of highly localized Fiber Bragg Gratings (FBGs). The
influence of slit width on the shape and area of Refractive Index
Modulation Region (RIMR) induced by a single femtosecond laser
pulse was investigated. The shape of RIMR can be changed from
a spot to a line with an enlarged RIMR, and hence enhances the
coupling strength of core mode and cladding modes. The RIMRs
were precisely assembled along the fiber core, producing highly
localized FBGs with a spectral comb of pronounced Cladding
Mode Resonances (CMRs) intensity of more than 30 dB, a wide
wavelength span of 240 nm and a low insertion loss of 0.3 dB.
Note that the total processing time for fabricating such a highly
localized FBG only requires ~3.7 s. Subsequently, by including
tilted angle on the slit, highly localized tilted FBGs were fabricated
and these FBGs show adjustable envelope on the CMRs. Moreover,
we investigated the surrounding Refractive Index (RI) response and
thermal characteristics of the fabricated highly localized FBGs,
which exhibit a sensitivity of 510.87 nm/RIU in a wide RI measure-
ment range and excellent high temperature resistance at 1000°C.
Therefore, such highly localized FBGs could potentially be used for
multi-parameter sensing in many extreme environments.
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I. INTRODUCTION

LADDING Mode Resonances (CMRs) of Fiber Bragg
C Gratings (FBGs) are sensitive to external changes. They
have wide applications in sensing for many parameters, such as
strain, bending, acceleration and refractive index (RI) [1]. Due
to the RI sensing ability, they can directly perceive humidity
fluctuation, and hence can be developed for breath monitoring
[2]. Plasmonic fiber sensors based on tilted FBGs with nanoscale
gold coating have been used as a biochemical sensor for in-situ
detection of gas and electrochemical activity in energy storage
devices, and ultrasensitive detection of glucose, protein and cell
in biological systems [1], [3]-[5]. Resonant coupling strength
and spectral range of cladding modes are two key factors for
sensing. Various methods have been proposed to enhance the
coupling strength of CMRs in a full octave. Tilted FBGs are the
most commonly used CMR elements and could be fabricated
by using high energy pulsed excimer UV lasers and phase-mask
approach, in which a tilted angle can be introduced by rotating
the phase mask relative to the fiber [6]. Moreover, off-axis
FBGs are also proposed to excite CMRs. These gratings can
be fabricated without any additional rotation in the phase mask
[7]. However, these UV-induced type I FBGs cannot withstand
a high temperature of up to 320 °C [8], [9].

Femtosecond laser is a powerful tool for fabricating FBGs
with enhanced thermal stability. The core mode resonance and
CMRs in a femtosecond laser-induced tilted FBG can withstand
a high temperature of above 800 °C [10], [11]. However, tilted
FBGs and off-axis FBGs, regardless of the fabrication method
by using an excimer UV laser or a femtosecond laser, exhibit
relatively weak CMRs (<7 dB in transmission) in a narrow
spectral range (30-40 nm band below core mode resonance) [7],
[10], [11]. Pham et al. proposed a concatenating off-axis tilted
FBG with an extended CMRs spectral range of 215 nm [12]. A
large tilted angle can be used for shifting the CMR envelope to
shorter wavelengths, but core mode resonance will disappear as
the tilted angle exceeds 6° [12], [13]. It prevents multi-parameter
sensing based on CMRs and core mode resonance. Moreover,
such device still has a weak resonant coupling strength of <5
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dB in CMRs. Bao et al. reported an off-axis FBG inscribed with
high-intensity femtosecond laser. The CMRs in such off-axis
FBGs have a strong resonant coupling strength of >30 dB,
whereas the insertion loss is non-negligible (i.e., >2 dB) [14].

Furthermore, the femtosecond laser-inscribed highly local-
ized type II FBGs, in which the Refractive Index Modulation
Region (RIMR) has a high index contrast and does not cover
the entire core cross section, can realize pronounced CMRs
with extended wavelength band to a full octave. For example,
Adbukerim et al. achieved a highly localized type II FBGs by
using a femtosecond laser phase mask method. The CMRs in
such FBG exceed 30 dB in transmission and spectrally span
more than 250 nm [15]. Nevertheless, it is inflexible to tune the
Bragg wavelengths by using this approach. In addition, in the
case of a femtosecond laser Point-by-Point (PbP) technology,
the tightly focused femtosecond laser pulses are very suitable to
induce highly localized RIMR, but the RIMR is much smaller
than the core mode and limits the coupling strength of core
mode and cladding modes [16], [17]. Moreover, in the case of
a femtosecond laser line-by-line technology, it is effective to
enlarge the RIMR, but the fabrication process is time-consuming
[13], [18]. Recently, a novel spatial beam shaping method was
proposed for enlarging the RIMR in PbP FBGs [19], [20]. We
used this method for efficiently producing high-quality PbP
FBGs, exhibiting high reflectivity and low insertion loss [21].

In this letter, we report for the first time, to the best of our
knowledge, a slit beam shaping method for femtosecond laser
PbP inscription of highly localized type II FBGs, featured by
enhanced CMRs comb in a full octave, low insertion loss and
excellent high temperature stability. We studied the influence of
slit width on the shape and area of RIMs. The RIMR created
in the fiber core is line-shaped and exhibits a significantly
enlarged area. Hence, the CMRs in the FBGs assembled by
such RIMRs could span a full octave in the spectrum and were
very pronounced with resonant dips deeper than 30 dB. Tilted
localized FBGs were also fabricated by simply rotating the slit,
and hence the envelope in CMRs shifts towards shorter wave-
lengths. Moreover, such FBG exhibits a wide RI measurement
range with a sensitivity of 510.87 nm/RIU and could withstand
a high temperature of 1000 °C.

II. SETUP OF FABRICATING HIGHLY LOCALIZED FBG BY
USING SLIT BEAM SHAPING

The principle and experimental setup used for the fabrication
of highly localized FBGs are shown in Fig. 1, which was
modified from our previous setup in [21]. A frequency-doubled
fslaser amplifier (Light Conversion, Pharos) with a central wave-
length of 513 nm, a pulse duration of 290 fs and a repetition of
200 kHz was used as the laser source. An adjustable mechanical
slit (Thorlabs, VA100) was fixed on a rotation stage, which could
be used to introduce a tilted angle. A section of coating-removed
single mode fiber (SMF, Corning) was mounted on an assem-
bled 3D air bearing translation stage (Aerotech ABL10100-LN,
ABL10100-LN, ANT130V 5-CN1-PL2). The laser beam was
tightly focused into the fiber core via a 100x oil-immersion
objective (NA = 1.25, Leica). The output face of the objective
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Fig. 1. Schematics of the working principle and experimental setup for fabri-
cating highly localized FBGs by using a femtosecond laser PbP technology and
slit beam shaping method. (Insert: the top view of the RIM created by used of
various slit widths W and tilted angle 6.).

W=08mm W=0.6mm W=04mm
54 nl) 61 nJ 73]
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without slit
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Fig. 2. (a) Top-view-, and (b) lateral-view- microscope images of the RIMs
created in fiber core by a single femtosecond laser pulse with slit beam shaping.
A sample inscribed without slit beam shaping and four samples inscribed with
decreasing slit widths of W = 0.8 mm, 0.6 mm, 0.4 mm and 0.2 mm were
demonstrated.

and SMF were immersed in the index matching oil to reduce the
aberration at silica/air interfaces. The boundary between core
and cladding can be observed via the objective. The fiber was
moved precisely by controlling translation stage, so that focal
spot of the beam can be located in the middle of the fiber core.
The shutter was opened and the fiber was translated along the
fiber axis (i.e., the x-axis in Fig. 1). Then a highly localized
FBG consisting of a series of periodic RIMRs was realized. In
this process, the area, shape and tilted angle of RIMRs could be
flexibly controlled by adjusting the width and tilted angle of slit.
The focused beam waist (i.e., wy and wy) on each axis (i.e., x-
and y-axis) was expressed as [19]

JA JA
= W, =
W, Y W,

Wy ey
where Wx and Wy are the beam waists of the unfocused Gaussian
beam on the x- and y-axis, respectively, f is the focal length of
the objective, 4 is the laser wavelength. Note that the w, will be
extended by reducing Wy of the incident beam and the shape
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A PbP FBG S1 inscribed without slit beam shaping and four PbP FBGs S2-S5 inscribed by using slit beam shaping with a decreasing slit width of W =

0.8 mm, 0.6 mm, 0.4 mm, and 0.2 mm. (a) Top-view microscope images and (b) transmission spectra of S1-S5.

of focal volume can be transformed to an elongated line, which
means each RIMR induced by a single femtosecond laser pulse
will significantly increase.

III. FABRICATION OF HIGHLY LOCALIZED FBG

We experimentally studied the effect of slit width on the shape
and the area of RIMRs. A single femtosecond laser pulse with
pulse energy of 39 nJ was focused directly in the fiber core
without a slit. As shown in Fig. 2(al) and (b1), the RIMR top
view shows a near circular spot with a width wy of 1.7 ym on
the y-axis and the RIMR lateral view shows a depth w, of 2 ym
on the z-axis. Then, a slit was inserted in front of the objective.
The femtosecond laser beam propagated through the slit and
was focused into the fiber core. The slit width W varies from
0.8 mm to 0.2 mm with a step of 0.2 mm and the corresponding
on-target single pulse energies range from 54 nJ to 125 nJ. In
case the slit width W decreases, as displayed in Fig. 2(a2)—(a6)
and (b2)—(b6), the width wy of RIMR on the y-axis increases
drastically, whereas the width wx of RIMR on the x-axis and the
depth wz of RIMR on the z-axis remain almost unchanged. A
largest width wy, of 6.1 um can be achieved at the slit width W
of 0.2 mm. It means the shape of RIMR has been transformed
from a spot to a line with enlarged area, which is beneficial
for enhancing the coupling strength in FBGs. Moreover, the
geometry in such RIMRs is also in favor of producing tilted
FBGs.

Subsequently, we employed such a slit beam shaping method
to fabricate highly localized FBGs. A PbP FBG sample S1 was
inscribed without slit beam shaping and four PbP FBGs (S2,
S3, S4, and S5) were inscribed with decreasing slit width W
of 0.8 mm, 0.6 mm, 0.4 mm and 0.2 mm, respectively. The
corresponding single laser pulse energies used for fabricating
S1-S5 were 39 nJ, 54 nJ, 61 nJ, 73 nJ and 125 nJ, respectively.
Moreover, the moving speed of the translation stage and the laser
frequency were set to 1.07 mm/s and 1 kHz, respectively. All of
these FBGs have the same grating pitch of 1.07 ;zm and the same
grating length of 4 mm. The transmission spectra of the FBGs
were measured by a broadband light source (Fiber Lake) and an
Optical Spectrum Analyzer (OSA, Yokogawa AQ6370C). The
scanning span ranged from 1265 nm to 1600 nm. The resolution,
sampling interval and sampling were set to 0.02 nm, 0.007 nm
and 50001, respectively. The sensibility was set to High 1. As
shown in Fig. 3(al), the PbP FBG S1 fabricated without slit
beam shaping exhibits a point-shaped RIMR. Moreover, the slit
beam shaping was used for inscribing PbP FBGs S2-S4. As
shown in Fig. 3(a2)—(a5), an elongated RIM could be created.
Note that the RIMs in S1-S5 are highly localized since the
RIMR is still smaller than the core mode field. This effect is
beneficial for generating strong CMRs. Fig. 3(b1)—(b5) show
that all of the five FBGs exhibit a low insertion loss of <0.68
dB and a Bragg wavelength of 1550 nm. The CMRs can span a
full octave of ~240 nm in the transmission spectra and have a
cutoff wavelength situated at ~1310 nm. The wavelength range
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Fig. 4.
microscope images and (b) transmission spectra of S5-S8.

of the CMRs in such FBGs is much wider than conventional
tilted FBGs or off-axis FBGs induced by femtosecond laser [12],
[17]. Moreover, in the case of S1, as shown in Fig. 3(b1l), the
CMR exhibits a relatively weak intensity of 12.56 dB, resulting
from the small RIMR in S1. As shown in Fig. 3(b2), S2 has an
increasing cladding mode intensity of 19.58 dB. In the case of S3
and S4, the CMR intensity can exceed 20 dB. A CMR intensity
of 35.53 dB has been achieved in S5, as displayed in Fig. 3(b3)-
(b5). Meanwhile, a strong core mode intensity of more than
40 dB was also achieved in S5. These results illustrated that
the slit beam shaping can significantly increase cladding modes
and core mode intensity since the overlap between the RIMR
area and mode field is enlarged. Therefore, compared with the
line-by-line technique, the highly localized FBGs created by our
method exhibit a more pronounced CMR intensity, a wider CMR
range and a lower insertion loss. Given the moving speed of 1.07
mm/s and the grating length of 4 mm, the total time for creating
such FBGs only requires ~3.7 s, which is more efficient [13],
[18].

Moreover, it could be seen from Fig. 3(bl1)—(b5) that the
FBGs S1-S5 exhibit strong lower-order CMRs near core mode
resonance, but the higher-order CMRs at shorter wavelength
range, which are more sensitive to environments, are still weak.
A line-shaped RIMR can be achieved with a narrow slit, for
example, the RIMR exhibits the largest width wy of 6.1 ym
at the slit width W of 0.2 mm, as shown in Fig. 2(a5). Hence,
we can further produce titled FBGs with enhanced higher-order
CMRs by simply rotating the slit relative to the fiber axis, i.e.,

1300

1350 1400 1450 1500 1550

Wavelength (nm)

Four PbP FBGs S5-S8 inscribed by using a constant slit width of W = 0.2 mm with an increasing tilted angle 6 of 0°, 5°, 10°, and 15°. (a) Top-view

introducing a tilted angle 6 in the fabrication process. As shown
in Fig. 4(al)—(a4), the PbP FBG S5 without tilted angle and
another three PbP FBGs S6-S8 with tilted angle 6 of 5°, 10°, and
15°, respectively, were fabricated by using the same slit width
W of 0.2 mm, laser pulse energy of 125 nJ, grating pitch of 1.07
pm and grating length of 4 mm. As displayed in Fig. 4(bl)-
(b4), the core mode resonance vanishes vastly with tilted angle
increasing. The spectral range (i.e., 240 nm) of CMRs remains
almost unchanged, but the envelope in continuous comb shifts
towards shorter wavelength. This phenomenon is similar to
that observed in conventional excimer UV-induced type I tilted
FBGs. Moreover, the CMR intensity maximum decreases with
tilted angle increasing, shifting from 35.53 dB at 1540.60 nm
to 17.25 dB at 1460.08 nm. The spectral evolution indicates
the localized RIMRs with a larger tilted angle can enhance the
coupling from forward propagating core mode to higher-order
backward propagating cladding modes [1].

IV. SENSING CHARACTERISTICS

The highly localized FBG is very suitable for biochemi-
cal sensing, since it exhibits strong CMR in a wide span of
240 nm. The surrounding RI response of the FBG S5 was
studied by using the standard RI matching liquids with RI
ranging from 1.33 to 1.45. As shown in Fig. 5, the higher-
order CMRs at shorter wavelengths gradually disappear as the
surrounding RI increases. Moreover, the response vanishes at
a surrounding RI of 1.45, which results from the conversion
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Fig. 5. Evolutions of transmission spectra of the fabricated highly localized
FBG S5 in various RI liquids with a linear fit of the cut-off wavelength with RI.
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Fig. 6. Transmission spectra of the FBG S5 at elevated temperatures from
room temperature to 1000°C.

of the cladding mode into leaky mode when the surround-
ing RI is equal or larger than the effective RI of cladding
mode. The cut-off wavelength marked by asterisks could be
regarded as a linear function of the surrounding RI with a
slope of 510.87 nm/RIU. These results are consistent with a
tilted FBG inscribed by using line-by-line technology [13] or a
highly localized FBG created by using a phase mask technology
[15].

Furthermore, the high-temperature response of the fabricated
highly localized FBG was studied by using a tube furnace
(Carbolite, Gero HTRH). The FBG sample S5 was placed into
the center of tube furnace. A B-type thermocouple was placed
in proximity to the FBG to in-situ record the temperature.
The heating procedure was set as 1 hour at 300°C, 1 hour at
600°C, 1 hour at 900°C and 5 hours at 1000°C. Fig. 6 shows
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Fig.7. Bragg wavelength shift as functions of temperature increasing and de-
creasing between 25°C and 1000°C (a) before annealing and (b) after annealing
process.

that the CMR intensity could exceed ~36 dB at 300°C, 600°C
and 900°C, which is larger than that at room temperature (i.e.,
~35 dB). After annealing at 1000°C for 5 hours, the CMR
intensity decreases slightly to 30.24 dB. This indicates the type |
modulation region formed by the relaxation of internal stress has
been erased, leading to a decrease in the cladding mode coupling.
Moreover, we used the Gaussian fit algorithm to extract the
Bragg wavelength from the spectra. The results are plotted in
Fig. 7(a) and (b) [22] and well fitted by a third order polynomial
function. After this annealing process, the hysteresis could be
eliminated, and the curves show excellent thermal stability and
repeatability, benefiting from the relaxation of residual stress
[23], [24]. The temperature sensitivities are 10.6 pm/°C at 25°C
—300°C, 15.1 pm/°C at 300°C—-600°C, and 17.0 pm/°C at 600°C
— 1000°C, which is in accord with conventional silica-based
FBGs sensors [8]-[10], [25]. Therefore, such highly localized
FBGs can survive at 1000°C, which is similar with FBGs cre-
ated by using phase mask [15], and hence are promising for
multi-parameter sensing in harsh environments.

V. CONCLUSION

In summary, we demonstrated an efficient method for creat-
ing highly localized FBGs by using a femtosecond laser PbP
technique with a slit beam shaping method. The effect of slit
width on the shape and area of the created RIMR was studied,
and a line-shaped RIMR with an enlarged area was obtained by
using a slit width of 0.2 mm. A high-quality highly localized
FBG, featured by a pronounced CMR intensity of more than
30 dB, a wide CMR range of 240 nm and a low insertion loss
of 0.3 dB, was successfully fabricated by using these RIMRs.
The total time for producing such FBG only requires ~3.7s.
We also demonstrated the fabrication of tilted highly localized
FBGs by introducing a tilted angle through rotation of the slit.
The envelope of the CMRs in such titled FBGs can be shifted
towards shorter wavelengths. Moreover, the highly localized
FBG exhibits a wide RI measurement range with a sensitivity
of 510.87 nm/RIU and it can withstand a high temperature of
1000°C. As a result, such highly localized FBGs are promising
for multi-parameter sensing in harsh environments, such as
hypersonic vehicles, aero-engines, and nuclear reactors.
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