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Abstract—We inscribe and characterize a series of helical
intermediate-period fiber gratings (HIPFGs) on single-mode fiber
with pitches from 24µm to 48µm. The fabricated HIPFGs have low
temperature sensitivity, low torsion sensitivity, and high refractive
index sensitivity. A series of separated peaks with low insertion
losses and high coupling strengths are observed in the transmission
spectra of the HIPFGs. For the HIPFG with grating pitch of 36 µm
(HIPFG-3), the peaks located at around 1596 nm and 1603 nm are
chosen to evaluate the sensor performance of the fiber gratings. The
temperature sensitivities are 6.86 pm/°C and 7.53 pm/°C for peaks
around 1596 nm and 1603 nm, respectively. The corresponding
values of the torsion sensitivities are 8.67 nm/(rad/mm) and 9.49
nm/(rad/mm) for those two peaks, respectively. In addition, the
average refractive index sensitivity of the grating reaches 393.9
nm/RIU in the range of 1.310-1.408. The sensitivity of the HIPFG-3
at the RI of 1.408 is calculated to be 1291 nm/RIU. Therefore, we
conclude that the HIPFGs proposed in this paper can be used as
a high-sensitivity refractive index sensor which is not sensitive to
temperature and torsion.

Index Terms—Helical intermediate-period fiber gratings, helical
grating fabrication system, fiber optics sensors, refractive index
sensor.

I. INTRODUCTION

LONG-PERIOD fiber gratings (LPFGs), which are charac-
terized by insertion loss resistance, ease of fabrication, low
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back reflection, and high sensitivity, have been widely exploited
in a variety of fields, including optical sensors [1], commu-
nication [2], neural computing [3], and optical tweezers [4].
Many fabrication methods have been proposed to fabricate fiber
gratings on single-mode fibers, such as femtosecond laser direct
inscribing [5], CO2 laser writing [6], direct inscribing [5], CO2
laser writing [6], laser exposing [7], electric-arc discharging
[8], ion-beam irradiation [9], mechanical micro-bending [10].
Refractive index (RI) is an essential parameter used in the LPFGs
sensor application. Several methods were proposed to improve
the sensitivity for RI sensors. For example, Tsuda et al. examined
the influence of grating length and bend radius of gratings on
refractive index sensing. Their results demonstrated that the
RI sensitivity of LPFGs could be modified by changing the
grating length and bend radius [11]. Tripathi et al. proposed
a bio-sensor based on two cascaded dual-resonance long-period
fiber gratings with ultra-high sensitivity [12]. Arimand et al.
reported the internally tilted long-period gratings with refractive
index sensitivity up to 100 nm/RIU [13]. Recently, by combining
thin film materials and fiber sensors, the higher interaction
between the evanescent field and the surrounding environment
has been enhanced, and higher sensitivity can be obtained [14]–
[16]. While, the sensitivity can be improved by changing the
cladding diameter [17]–[19]. However when the thickness of
the fiber cladding decreases, the grating becomes fragile. But
the manufacturing process of these methods is complicated and
processing conditions need to be finely controlled. In addition,
the inherent high sensitivity of LPFGs, along with other un-
necessary interferences, such as temperature and torsion, cause
cross-sensitivity in refractive index sensing.

This is an urgent problem to be solved for reliable RI sensing.
In this case, Shu et al. presented a detailed investigation into
the sensitivity of long-period fiber gratings with a period down
to 34 μm [20]. The simulation results showed that when the
period is as low as tens of micrometers, the sensitivity of
temperature and strain is small. Then, the difference between
the effective index and the surrounding RI decreased, which
causes the sensitivity of RI higher than standard LPFGs. How-
ever, LPFGs with a period below 100 micrometers are rarely
investigated. Shen et al. reported a long-period fiber grating
with a period of 25 μm fabricated by UV laser exposing [21].
There are also femtosecond laser processing methods to achieve
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the fabrication of small-period long-period gratings [22], [23].
However, these two techniques are not easy to achieve high
coupling strengths and low insertion losses. Kopp et al. proposed
chiral intermediate-period gratings (CIPGs) and studied their
polarization characteristics [24]. However, they don’t do much
research on the sensing characteristics of CIPGs. Here, we first
induced hydrogen-oxygen flame heating method for HIPFGs
fabrication.

In this paper, we demonstrate a high-efficiency grating fabri-
cation system to write a series of HIPFGs with pitches from 24 to
48 μm in standard single-mode fiber (SMF) by rotating the fiber
simultaneously during hydrogen-oxygen flame heating. Com-
paring with the small-period long-period gratings fabricated by
ultraviolet laser exposure [21] or femtosecond laser direct in-
scribing [22], [23], the fabricated HIPFGs have an ultra-smooth
grating surface along the fiber axis direction, a higher coupling
strength and a lower insertion loss. Furthermore, we can obtain
a large number of HIPFGs with different pitches quickly by
simply changing the processing parameters. We also measure the
sensing characteristics of the 36 μm pitch sample for the applied
temperature, torsion, and refractive index. Experimental results
show that the proposed HIPFG has lower temperature sensitivity
and torsion sensitivity, and high refractive index sensitivity.
The average refractive index sensitivity of the HIPFG-3 reaches
393.9 nm/RIU when the surrounding refractive index changes
in the range of 1.310–1.408. The sensitivity of the HIPFG-3 at
the RI of 1.408 is calculated to be 1291 nm/RIU.

II. SENSOR DESIGN AND FABRICATION

In our experiment, the high-efficiency helical grating fabrica-
tion system was used to fabricate HIPFGs, which is consisting of
a high-precision rotator, two translation stages, and a hydrogen
generator. Detailed information about helical grating fabrication
system can be found in our previous works [25]. Here, in order
to fabricate the HIPFGs, we have replaced the motor with high
rotated rate, modified the processing conditions, in the helical
grating fabrication system. The HIPFG’s pitch is calculated by:

Λ = 60V2/Ω (1)

where, Ω (rpm) is a rotated rate, V2 (mm/s) is a moving velocity
of translation stage, respectively. Therefore, the HIPFGs can be
obtained by increasing the rotated rate of motor or reducing the
moving velocity of the translation stage. For example, in our
experiment, we replace a motor with a faster rotated rate, which
is set to 3000 rpm with reducing the velocity of the translation
stage to 1.2 mm/s, and then, a HIPFG sample could be fabricated
with a grating pitch of 24 μm. We designed and fabricated
five samples (HIPFG-1, HIPFG-2, HIPFG-3, HIPFG-4, and
HIPFG-5), and the corresponding grating pitches are 24 μm,
30 μm, 36 μm, 42 μm, and 48 μm, respectively. The HIPFGs
lengths of five samples are cut to be about 20.0 mm, 22.0 mm,
17.5 mm, 15.5 mm, and 16.0 mm, respectively. The transmission
spectra of the sampled gratings are monitored by using an am-
plified spontaneous emission source (ASE, NKT Photonics) and
an optical spectrum analyzer (OSA, YOKOGAWA, AQ6370C)
with a resolution of 0.02 nm. The transmission spectra of the

Fig. 1. The transmission spectra of five fabricated HIPFG samples (HIPFG-1,
HIPFG-2, HIPFG-3, HIPFG-4, and HIPFG-5).

fabricated HIPFGs are shown in Fig. 1. The helical LPFG’s
resonant wavelength and coupling strength of resonance peak
are strictly depended on the grating pitches and numbers of
grating pitches (i.e., grating length), respectively, this conclusion
is discussed in detail in reference [26]. A series of separated
peaks appear in the transmission spectra of samples with dif-
ferent grating pitches. When the pitch increases from 24 μm
to 48 μm with a step of 6 μm, the spacing between adjacent
two sets of separated peaks are 90.06 nm, 99.07 nm, 113.5
nm, 124.98 nm, and 141.14 nm, respectively. Therefore, as
the grating pitch decreases, the spacing between the adjacent
two sets of separated peaks becomes smaller. All samples have
high-quality transmission spectra and the coupling strengths,
of which a maximum more than -20 dB. And the full width
at half-maximum (FWHM) of the HIPFG is only about 3 nm,
which is narrower than that of reported value 20 to 30 nm of
the normal LPFG with a pitch around 550 to 600 μm [27]).
For complete transfer, the Δλ (FWHM) of LPFG can be given
approximately by:

Δλ ≈ 0.8λ2

L
(
nco
eff − ncl,m

eff

) (2)

where, L is the grating length, nco
eff and ncl,m

eff are the effective
indexes of the fundamental core mode and the mth cladding
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Fig. 2. (a) The spectral evolution of four HIPFG samples. (b) The zoomed-in
transmission spectrum covering the wavelength range from 1450 to 1540 nm.
(c) Variations of the resonance wavelength of four samples with different
pitches.

mode, respectively. Moreover, the order of the cladding mode
increases with the grating pitch decreasing, resulting in the
smaller value of the ncl,m

eff [28]. So, the pitch of our HIPFG is
much smaller than that of a normal LPFG, according to equation
(2), it can be calculated that the Δλ (FWHM) of the HIPFG is
narrower than that of a normal LPFG. These features provide a
favorable condition for sensor application.

In order to obtain the spectral evolution of the HIPFGs with
different pitches, four samples were designed and fabricated
with a pitch step of 0.5 μm. The grating pitches are 35 μm,
35.5 μm, 36 μm, and 36.5 μm, respectively. The transmission
spectra are shown in fig. 2(a), it can be seen that the resonance
peak shifts to the short-wavelength direction with the grating

pitch increasing. The coupling strengths of the four samples can
reach more than -20 dB and insertion losses are measured to less
than 0.1 dB.

Fig. 2(b) shows the zoomed-in transmission spectrum cover-
ing the wavelength range from 1450 to 1540 nm. Within this
wavelength range, the peaks in the green dashed box in the
spectrum are named dip-1, and the peaks in the red solid box
are named dip-2. Fig. 2(c) shows variations of the resonance
wavelength of four samples with different pitches. When the
pitch increases from 35 μm to 36.5 μm with a step of 0.5 μm,
the dip-1 shift toward a shorter wavelength direction, and the
corresponding variations are 22.52 nm, 29.0 nm, and 10.16
nm, respectively. And the dip-2 also shift toward a shorter
wavelength direction, the corresponding variations are 22.36
nm, 28.44 nm, and 10.32 nm, respectively. In short, when the
grating period increases by 0.5 μm, the dip-1 and the dip-2 shift
toward a shorter wavelength direction with 20.6 nm and 20.4 nm
on average, respectively. The processing accuracy of the system
has reached the sub-micron scale.

III. ANALYSIS OF GRATING

In the following content, the HIPFG-3 sample is chosen as
a research example, to study the structure and the polarization
characteristics of our grating samples.

The transmission spectrum of the fabricated HIPFG-3 is
shown in Fig. 3(a). Four sets of separated peaks are observed
around 1259 nm, 1362 nm, 1475 nm, and 1600 nm in the
transmission spectrum. The peak separation gap of HIPFG-3 is
increasing as wavelength increasing which are 4.33 nm, 4.83 nm,
5.46 nm, and 6.45 nm in sequence. As shown in the figure,
the coupling strength at longer wavelengths is deeper than the
coupling strength at shorter wavelengths. Fig. 3(b), enlarging
view of the separated peaks, shows the transmission spectrum
of HIPFG-3 with a wavelength range from 1590 to 1610 nm.
The coupling strengths of dip-1 and dip-2 can reach -22.94
dB and -17.02 dB at 1596.8 nm and 1603.3 nm, respectively.
And the insertion loss of the grating is as low as 0.1 dB. To
investigate the actual structure of the HIPFG-3 sample, we
obtained an optical microscope image and a scanning electron
microscope (SEM) image of the sample. Fig. 3(c) shows the
structure of the fabricated HIPFG-3 sample observed by the
optical microscope along the fiber-axis direction of optical fiber.
We can see the periodic RI perturbations in the SMF. The actual
structure of the fiber axial surface is obtained by SEM, as shown
in Fig. 3(d). There is no mechanical deformation on the surface
of the HIPFG-3 sample.

As shown in Fig. 3(a), a strong peak splitting is observed.
The reason is that the intrinsic properties of high-order cladding
modes in single-mode fiber, which are far away from weakly
guided regime. Thus, we should take their vectorial nature and
degeneracies into account [22], [29], [30]. To further analyze the
reason for the peak splitting, the near field mode beam profiles
of the separated peaks in the HIPFG-3 sample are detected. The
light from a tunable laser is propagated into the grating sample
which is cleaved at the last grating period and fixed by the fiber
clamp, and then the beam is collimated into an infrared camera
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Fig. 3. (a) The transmission spectrum of HIPFG-3. (b) The transmission
spectrum of HIPFG-3 with a wavelength range of 1590 nm-1610 nm. (c)
Microscope imaging of the fabricated HIPFG-3. (d) The SEM along the fiber
axis direction of the fabricated HIPFG-3.

through a lens. The dip-1 and dip-2 at resonant wavelengths of
around 1597 and 1604 nm shown in Fig. 3(b) have the same
orders of 26th cladding modes, as shown in Figs. 4 (a) and (b).
Similarly, the same orders of 27th cladding modes at the resonant
wavelengths of 1475 and 1581 nm for another set of separated
peaks were also observed, as shown in Figs. 4 (c) and (d).
Therefore the peak splitting is a result of fundamental core
mode coupling to two polarization states of the same high-order
cladding modes.

Next, we select the two wavelengths range of 1596 -1597.5
nm and 1601.5 -1605 nm in the original spectrum for the
polarization-dependent loss (PDL) measurement to study the
polarization characteristics. The PDL of sample HIPFG-3 is

Fig. 4. (a), (b), (c), (d) Beam profiles generated by the inscribed HIPFG-3 at
the wavelength of 1597, 1604, 1475, and 1481 nm, respectively.

measured at the splitting of resonance peaks and the instruments
for measuring PDL include a tunable laser source (Keysight
Model N7776C), a polarization synthesizer (Keysight Model
N7788C), and an optical power meter (Agilent Model N7744A).
Fig. 5(a) shows the TE, TM, and PDL spectra of the HIPFG-3
at around dip-1. The PDL of the grating sample at a wavelength
of 1596.9 nm is -16.54 dB and the wavelength spacing between
dip-1 and dip-2 is about 0.27 nm. The TE, TM, and PDL spectra
of the HIPFG-3 at around dip-2 is shown in fig. 5(b). The PDL
of the HIPFG-3 at 1603.1 nm is -11.35 dB and the wavelength
spacing between dip-1 and dip-2 is about 0.47 nm. The strong
polarization dependence is mainly due to the asymmetric az-
imuth profile of the refractive index modulation in the helical
fiber.

IV. REFRACTIVE INDEX MEASUREMENT AND DISCUSSION

We measured and characterized the sensing characteristics
of refractive index of the 36 μm pitch sample. The refractive
index matching liquid provided by Cargille Labs was applied for
the RI measurement. When testing the refractive index sensing
characteristics, the entire HIPFG-3 sample was immersed in the
refractive index matching liquid and the spectra were recorded
after the spectra stabilized. After each measurement, the surface
of the tested sample was wiped off by ethanol to restore the
spectrum back to the original spectrum state. Fig. 6(a) shows the
HIPFG-3 transmission spectra in air and different surrounding
liquids with a refractive index range from 1.310 to 1.408. We
can see that as the refractive index increases, the peak shifts
toward the long-wavelength direction. When the refractive index
is above 1.375, the double resonance peaks shift into a single
peak, owing to the effective refractive indexes of these two vector
modes are different [28], [31]. Furthermore, the mode indexes
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Fig. 5. (a) The transmission spectrum of the HIPFG-3 with a wavelength range
from 1590 to 1610 nm. (b) Measurement results for the TE, TM, and PDL spectra
of the HIPFG-3.

of these two polarization states vector modes vary and the index
difference between these two modes decreases as the refractive
index increases. Therefore, the separated peaks of HIPFGs
overlap together for RI above 1.375, and only one resonance
peak is observed in the transmission spectrum, as shown in
Fig. 6(a). Fig. 6(b) depicts the shift of the long-wavelength side
resonance peak as the refractive index changes. The sensor’s re-
fractive index sensitivity appears to a nonlinear increase with the
surrounding refractive index increasing. When the surrounding
refractive index increases from 1.310 to 1.408, the wavelength
change is 38.6 nm and the average refractive index sensitivity
is 393.9 nm/RIU. As the value of the refractive index increases,
the sensor sensitivity increases. The sensitivity of the HIPFG-3
at the RI of 1.408 is calculated to be 1291 nm/RIU.

V. TEMPERATURE MEASUREMENT

We also evaluated the temperature independence of the sam-
ple HIPFG-3. In the measurement, a column oven (LCO 102,
ECOM) with an accuracy of 0.1°C was utilized and the tem-
perature range was set from 20°C to 100°C in steps of 10°C.
The spectrum is shown in Fig. 7(a). As shown in the figure, as
the temperature increases, the resonance wavelength shifts to a
longer wavelength. The linear fitting diagram of the measured

Fig. 6. (a) HIPFG-3 transmission spectra in air and different surround refrac-
tive index. (b) Relationship between resonant dip wavelength and the surround-
ing RI.

temperature is shown in Fig. 7(b). The temperature sensitivities
for the dips around 1596 and 1603 nm are 6.86 pm/°C and 7.53
pm/°C, respectively. This is far lower than the normal helical
long-period fiber gratings with a pitch around 600 to 900 μm
reported in [18] with a temperature sensitivity of ∼80 pm/°C.
The sensing characteristics of long-period fiber gratings are
described in detail in the Ref. [20]. The temperature sensitivity
of the long-period fiber gratings can be calculated by,

dλres

dT
= λres · γ · (α+ Γtemp) (3)

where, λres is the resonance wavelength, γ is the waveguide dis-
persion factor,α is the thermal expansion coefficient of the fiber,
and Γtemp is the sensitivity factor of temperature. Compared
with the standard long-period fiber gratings, the HIPFGs have
higher-order cladding modes and smaller effective refractive
indexes, which result in a smaller waveguide dispersion factor γ
and temperature sensitivity factor Γtemp , so the temperature
sensitivity of HIPFGs is lower than that of the LPFGs calculated
by Eq.(3). This result demonstrates that the HIPFG-3 can greatly
reduce influence caused by temperature.
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Fig. 7. (a) The spectral evolution of the HIPFG-3 with the temperature rising
from 20°C to 99.5°C. (b) The corresponding temperature response of the
HIPFG-3.

VI. TORSION MEASUREMENT

To evaluate the torsion sensing characteristics of HIPFGs,
we measured the torsional response of the sample HIPFG-3.
During the measurement, one end of the sample was fixed
on a rotating table, which provided a precise rotation angle,
and another end of the sample was fixed on a fixed stage.
The clockwise direction corresponds to the helical direction
of the measured HIPFG-3 sample, and the counter-clockwise
direction is opposite to the helical direction of the HIPFG-3.
The spectra are recorded at each twist angle and the result is
shown in Fig. 8(a). The dotted line corresponds to the resonant
peak position of the original spectrum when the torsion angle is
0°. The torsion angle increases from 0° to +360° (clockwise)
and -360° (counter-clockwise) with the step of 120°. When the
grating is twisted clockwise, the resonance wavelength shifts
toward a long-wavelength direction. On the contrary, the res-
onance wavelength shifts toward a short-wavelength direction.
Then the torsional sensitivity is calculated by linear fitting the
experimental data at room temperature shown in Fig. 8(b), the
values of the torsion sensitivity of the dip-1 and dip-2 are
measured to be about 8.67 and 9.49 nm/(rad/mm), which are
much smaller than that of reported values in Ref. [32∼35] of
103, 76, 46.46 and 96.4 nm/(rad/mm), corresponding to different
pitches of 500, 630, 450 and 550 μm, respectively. The principle

Fig. 8. (a) The spectral evolution of the HIPFG-3 with varying torsion angles.
(b) The corresponding wavelength shift for an applied torsion angle.

for the torsion sensing is similar to that of the strain sensing,
which in fact is the HIPFGs response to the stress. When the
twisted stress is applied to HIPFGs, the grating period decreases
or increases, depending on the twisted direction, i.e., clockwise
or anticlockwise. Here, the strain sensitivity of the long-period
fiber gratings can be calculated by [20]:

dλres

dε
= λres · γ · (1 + Γstrain) (4)

where, Γstrain is the sensitivity factor of strain. Similarly,
compared with the long-period fiber gratings, HIPFGs have a
smaller strain sensitivity factor Γstrain, so the strain sensitivity
of HIPFGs is lower than that of the LPFGs calculated by Eq.(4).
Therefore, we conclude that the influence caused by torsion is
relatively low.

VII. CONCLUSION

In this study, we propose and demonstrate a series of helical
intermediate-period fiber gratings fabricated on single-mode
fiber with pitches from 24 μm to 48 μm. The HIPFGs are
fabricated by rotating the fiber simultaneously during hydrogen-
oxygen flame heating. This fabrication method is low cost, high
efficiency, and easy production of different grating pitches. The
HIPFGs have high coupling strengths and low insertion losses,
the average refractive index sensitivity of the grating with a pitch
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of 36 μm reaches 393.9 nm/RIU in the range of 1.310-1.408.
The sensitivity of the tested HIPFG at the RI of 1.408 is cal-
culated to be 1291 nm/RIU. And the tested HIPFG exhibits
low-temperature sensitivities of 6.86 pm/°C and 7.53 pm/°C
at peaks around 1596 nm and 1603 nm, respectively. And the
torsion sensitivities of the two peaks are 8.67 nm/(rad/mm) and
9.49 nm/(rad/mm), respectively. Therefore, the cross-sensitivity
caused by temperature and torsion is greatly reduced. In con-
clusion, the HIPFGs proposed in this paper can be used as a
high-sensitivity refractive index sensor that is not sensitive to
temperature and torsion.
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