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Abstract: We propose a novel tilted long period fiber grating (TLPFG) design, inscribed using a
line-by-line inscription technique and an infrared femtosecond (Fs) laser. The responses of this
TLPFG to external refractive index, temperature, torsion, and strain were systematically investigated
to determine its sensing characteristics. The external refractive index (RI) was measured to be
−602.86 nm/RIU at an RI of ~1.432. The TLPFG was used to accurately measure temperatures up
to 450 ◦C with a sensitivity of 103.8 pm/◦C. The torsion and strain sensitivity of the device were
48.94 nm/(rad/mm) and −0.63 pm/µε, respectively. These results demonstrate that the proposed
TLPFG could be used as sensors in a series of application fields including high temperatures and
external environments.
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1. Introduction

Optical fiber sensors have been widely used in a variety of fields due to several inherent
advantages. They are highly sensitive, lightweight, compact, and immune to electric interference. Long
period fiber gratings (LPFGs) are a promising passive optical fiber device, capable of coupling light
in fiber core modes to several forward-propagating cladding modes, forming a series of attenuation
bands in the transmission spectrum [1]. As reported in previous studies, LPFGs-based sensors have
been developed to measure strain, pressure, and temperature [2]. Various fabrication methods have
been used to inscribe LPFGs for specific sensing applications, including UV-light exposure [3,4], CO2

laser irradiation [5,6], mechanical pressure [7–9], electric arc discharge [10–13], femtosecond laser
(Fs) [14,15].

Among these, UV-light exposure is the most common. This process takes advantage of
the photosensitivity of Ge-doped glass in the fiber core to induce periodic index modulation.
However, LPFGs fabricated in this way are not resistant to high temperatures and exhibit serious
grating degradation, even below 100 ◦C [14]. In addition, pretreated high-pressure hydrogen
loading processes are required to enhance the grating writing efficiency. To solve this problem,
Kondo et al. firstly fabricated an LPFG in a single mode fiber (SMF) using an 800 nm Fs laser and the
point-by-point method without hydrogen loading [14]. In 2008, Allsop et al. successfully inscribed
a series of symmetric and asymmetric LPFGs in photonic crystal fibers (PCFs) by a low-repetition
femtosecond laser system with the point-by-point method [16]. However, this point-by-point method
required precise alignment of the focused laser spot and fiber core when inscribing LPFGs. Further
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improvements have been made to this fabrication techniques in the past decade. In 2010, Liu et al.
presented a new method for fabricating LPFGs by periodically drilling holes into the photonic
crystal fiber cladding using a focused infrared Fs laser [15]. Recently, Dong et al. proposed a
transversal-scanning inscription method to fabricate LPFGs using an 800 nm infrared Fs laser [17].
It was determined that LPFGs fabricated with this method exhibit opposite bending characteristics
compared with LPFGs inscribed with the point-by-point method.

The tilted long period fiber gratings (TLPFGs) characterized with a <90◦ angle between the optical
axis and grating plane have attracted significant attention in the past decade [18]. Detailed theoretical
analysis has shown that TLPFGs exhibit unique properties, such as the core layer guided-modes
capable of coupling with a series of reverse high-order cladding modes, which did not occur in
non-tilted LPFGs. Fabrication of TLPFGs can be accomplished using several different techniques.
In 2011, Wu et al. experimentally fabricated TLPFGs with varying tilt angles using a CO2 laser [19].
The resulting grating transmission spectral shape was complex and included several smaller peaks.
This can be attributed to regularity of simultaneous refractive index modulation in the fiber core and
cladding. Furthermore, due to the large spot size of the CO2 laser, tilting effects in the grating were not
obvious, leading to poor repeatability in the grating fabrication process. In 2012, Zhang et al. reported
mechanical pressure-induced TLPFGs in a solid core PCF [20]. However, TLPFGs fabricated with this
method often experience aging stability problems. In 2013, Chiavaioli et al. used the point-by-point
method to produce specially-designed TLPFGs [21]. However, the fabrication process required a
manual rotation stage for inscribing grating planes at desired angles, which limited reproducibility
and efficiency.

In this study, we report on a tilted long period fiber grating (TLPFG) fabricated using an infrared
Fs laser and a line-by-line inscription method. This technique has several advantages, including
fabrication flexibility, high machining efficiency, and repeatability. The resulting TLPFGs exhibit
a high-quality transmission spectrum compared with those written by a CO2 laser or mechanical
pressure. A series of experiments were conducted to investigate the sensing performance of the
proposed TLPFGs, which achieved a sensitivity of −602.86 nm/RIU as the external refractive index
was increased from 1.402 to 1.432. The device achieved a sensitivity of 103.8 pm/◦C when the
temperature increased from room temperature to a high of 450 ◦C. The inscribed attenuation bands
were also found to be sensitive to torsion and strain. The measured twisting and strain sensitivities
were 48.94 nm/(rad/mm) and −0.63 pm/µε, respectively.

2. Tilted Long Period Fiber Grating Fabrications

A schematic diagram of the Fs laser micromachining apparatus is shown in Figure 1a. There are
multiple primary components incorporated in the fabrication system. An Fs laser (Spectra-Physics)
with a central wavelength of 800 nm, a pulse duration of 120 Fs, and a repetition rate of 1 kHz was
used to provide continuous laser machining. Optical power levels were adjusted though an attenuator,
which was composed of a half-wave plate and a polarizer, as discussed in Li et al. [22]. The controllable
power range varied from 0 to 4 mJ. An electronic shutter (THORLABS, SC10, Shanghai, China) was
connected to a computer and used to control the light path (on/off) in real time during fabrication.
The microscope objective lens used in our experiments exhibited a 20× magnification and an NA
value of 0.25. A 3D ultra-high precise (minimum incremental motion of 10 nm and a bi-directional
repeatability of 80 nm) electric controllable translation stage (Newport XMS50, VP-25X and GTS30V,
MICRO-CONTROLE Spectra-Physics S.A.S, Évry, Fracne) was used to control axial motion in the X, Y
and Z directions. A charge couple device (CCD) camera was used to monitor trace movements of the
laser spot and capture the morphology of the TLPFGs.
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Figure 1. (a) A schematic diagram of the Fs laser micromachining apparatus; (b) An image of the
TLPFG with a grating pitch of 450 µm; (c) A schematic of the Fs laser scanning trajectory.

A conventional SMF (corning) was used to fabricate the TLPFGs in these experiments. During
the fabrication process, a section of SMF coating layer was stripped off using fiber optic strippers
and cleaned with ethanol. It was then fixed in place using fiber holders. One end of the SMF was
connected to a broadband light source (BBS) and the other was directly attached to an optical spectrum
analyzer (OSA) to monitor the evolution of the TLPFGs transmission spectra. The laser beam was
focused in the x-y plane of the fiber core with the assistance of an optical microscope (Leica DM2500,
Leica Microsystems Inc., Buffalo Grove, IL, USA) and the Z translation stage. As a result, the focused
laser power could effectively alter the refractive index of the fiber core without significantly affecting
the cladding. Here, we define the parameter θ, which represents the angle between the movement
direction of the laser spot (i.e., the tilted grating plane) and the negative Y axis. The magnitude of this
angle can be calculated using the following method. Firstly, we let the laser spot be at the starting
point, and the vertical distance from the lower edge of the fiber core is l. Then using soft programming,
the laser spot can scan through the fiber core from the starting position to the end position with
a velocity of 50 µm/s. The vertical distance from the end position to the top edge of fiber core is
also equal to l. The axis movement distance of the laser spot is denoted as Λ, i.e., the grating pitch.
As shown in Figure 1c, we can obtain a geometric equation tan θ = Λ/((2l + d), where d is the fiber
diameter of ~10 µm. By setting scanning parameters l = 10 µm, Λ = 450 µm, we can obtain a value
of θ = arctan(450/(2 × 10 + 10)) = arctan(15) ≈ 86.18◦. Typical laser power was set to 2.6 mW before
entering the microscope objective lens. The electronic shutter was closed to obstruct the light path as
the laser spot moved to the lower edge of the fiber core, to begin a new scanning cycle. This process
was repeated for 30 periods, constituting a single cycle. Figure 1b shows a microscopic image taken
from the top of a section of the TLPFG.
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This method was utilized to fabricate a series of TLPFGs with varying angles of 83.65◦, 84.92◦,
86.18◦, and 88.73◦, as shown in Figure 2a. All the TLPFGs were fabricated with the same period of
450 µm. The tilt angle was closely related to grating spectrum quality. During fabrication, the grating
spectrum was nearly eliminated for the tilt angles below 83.65◦. The dip in the resonant wavelength
decreased noticeably for tilt angles above 88.73◦. As such, there exists an optimal tilt angle for grating
inscription. Yin et al. determined the optimal angle for TLPFGs formation to be ~87◦ [23], which is
agrees well with our experimental results. In this study, a tilt angle of 86.18◦ as the optimum was used
for fabricating three different TLPFGs with periods of 420 µm, 440 µm, and 460 µm, as illustrated in
Figure 2b, Figure 2c, and Figure 2d, respectively. Larger grating periods resulted in longer resonant
wavelengths under the same laser power machining conditions. This implies the resonance wavelength
exhibits a red shift an increasing grating pitch. As seen in Figure 2b, the resonance wavelength
dip reached a maximum value of −15.86 dB at 1460.8 nm after three scanning cycles. However,
the transmission spectrum dramatically deteriorated after the fourth scanning cycle. This indicates that
an over-coupling phenomenon occurred, similar to that of non-tilted LPFGs reported in ref. [24,25].
As shown in Figure 2c, the dip in the resonant wavelength around 1522.4 nm can reach up to −16.50 dB,
which is a little smaller than TLPFGs fabricated by CO2 laser irradiation [19]. This is because the small
size (~3 µm in diameter) of the focused femtosecond laser spot leads to relatively small refractive
index modulation in the fiber core. Furthermore, Figure 2d demonstrates that our proposed method
had a higher writing efficiency (less than 5 min), as high-quality TLPFGs transmission spectra were
achieved with only two scanning cycles by optimizing writing parameters (laser power and scanning
velocity). In order to better decide the cladding modes of the resonance wavelengths, we employed a
mode field observation system similar to ref. [1] to observe the resonance wavelengths of 1552.4 nm
and 1605.4 nm, as shown in the inset of Figure 2c and d respectively.
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Figure 2. Various TLPFG transmission spectra, including (a) TLPFGs with varying tilted angles;
(b) A TLPFG with a period of 420 µm; (c) a TLPFG with a period of 440 µm; (d) A TLPFG with a period
of 460 µm.
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A series of TLPFGs samples were fabricated with various grating pitches to demonstrate the
repeatability of our proposed method, as shown in Figure 3. From Figure 3a we observe that
variations in the resonant wavelength were within ±2 nm, which demonstrates that the refractive index
modulation was relatively uniform for each sample. The depth of the resonant dip was controllable
within a fluctuation range of only ±0.5 dB, as shown in Figure 3b. These results indicate that our
proposed method has excellent repeatability and high stability during TLPFGs fabrication.
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Figure 3. (a) The resonance wavelength; (b) The resonance depth of TLPFGs with different
grating pitches.

3. Refractive Index Sensing Characteristic

A series of experiments were conducted to access TLPFGs optical properties. Excluding a high
temperature experiment, all tests were performed at room temperature. An ASE (Fiber Lake) light
source with a wavelength ranging from 1250–1650 nm and an OSA (YOKOGAWA AQ6370C) with a
minimum resolution of 0.02 nm were used in the experiments. The results provide an assessment of
the sensing applications of the proposed TLPFGs design.

Conventional LPFGs are sensitive to variations in refractive index. This is caused by the formation
of resonance loss peaks through coupling between the core mode and several high-order cladding
modes, which are highly sensitive to outer cladding mediums. As such, TLPFGs have been used as
refractive index sensors in a variety of studies [26–28].

In this study, refractive index response measurements were conducted using a TLPFG with a
period of 460 µm and a total of 30 periods. The grating had three distinct resonance wavelengths
attributed to different high order cladding modes, coupled to the core mode in a wavelength range
of 1250–1650 nm. One end of the TLPFG was fixed in a fiber clamp and the other end was attached
to a 25 g small weight, providing a constant strain to align the fiber along the fiber axis direction.
The grating area was completely immersed in a series of commercial refractive index matching liquids
(Cargille Lab—http://www.cargille.com) ranging from 1.402 to 1.442. Each grating variation spectrum
profile was recorded as it was in a stable state. About 5 min are required during this process.

The grating area was cleaned with ethanol after each measurement, shifting the spectrum back
to its original values in air. Three resonance wavelengths were observed which exhibited different
refractive index responses, as shown in Figure 4a. High-order coupled cladding modes exhibited
relatively larger sensitivities. The resonance wavelength at 1559.7 nm with pattern of LP05 shifted
~21.08 nm toward the short wavelength regime as the refractive index increased from 1.000 to 1.442.
However, the low-order resonance wavelength at 1331.24 nm with a pattern of LP03 only shifted
~1.24 nm. Figure 4b shows a magnified wavelength shift spectrum at 1599.7 nm. From this we
observe the resonance wavelength includes an obvious shift while the transmission power showed
almost no change. The relationship between refractive index and wavelength is shown in Figure 4c.
The resonance wavelength follows a nonlinear relationship for refractive index between 1.000 and

http://www.cargille.com
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1.442 and a linear relationship between 1.432 and 1.442. The resulting sensitivity of LP05 reached
−602.86 nm/RIU with a fitting degree of R2 = 0.997 as shown in Figure 4d. This result is on the same
order with the ultra-long period gratings inscribed using an 800 nm Fs lasers [29]. Our proposed
TLPFGs exhibits a high refractive index sensitivity, compared with D-shaped fiber grating refractive
index sensor induced by an 800 nm Fs laser with a sensitivity of only ~30 nm/RIU [30].
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4. High-Temperature Sensing Characteristic

Optical fiber sensors have played an important role in the fields of defense, aerospace, and modern
industry. Several studies have investigated the high-temperature properties of LPFGs inscribed in
different types of optical fibers [29,31,32]. However, the high temperature response of TLPFGs has
not been studied as extensively. In this section, we performed high-temperature experiments to
characterize the thermal response of TLPFGs inscribed in an SMF using an Fs laser. The TLPFGs used
in these experiments had a grating pitch of 440 µm and a total of 30 periods.

The TLPFG was placed in a temperature-controlled thermoelectric oven within an accuracy
of ±1 ◦C, to observe thermally-induced variations in its grating spectral profile. During these
measurements, the temperature was increased from room temperature (~25 ◦C) to 450 ◦C with a
step size of 25 ◦C. The temperature was maintained for 10 min during each measurement to record the
stabilized grating transmission spectrum using an OSA.

As shown in Figure 5a, all three resonance wavelengths in the range from 1250 to 1650 nm shifted
towards longer wavelengths as the temperature increased from 25 ◦C to 450 ◦C. It is evident that the
resonance loss peak of the lower-order cladding modes (LP04) at 1376.3 nm decreased much faster
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than the high-order cladding modes (LP05) at 1511.9 nm. Lower-order resonance loss peaks exhibited
wavelength shifts of 23.2 nm while high-order resonance loss peaks shifted ~32.8 nm over the same
temperature range, as illustrated in Figure 5b. This indicates that high-order cladding resonance
wavelength with pattern of LP05 shows a relatively high temperature response sensitivity, as high as
S1 = 103.3 pm/◦C, with good linearity (R1

2 = 0.983) as shown in Figure 5c. This temperature response
sensitivity is larger than many other high temperature sensors based on optical fibers [14,32]. Staying
at 450 ◦C about 20 min, then the temperature was gradually cooled down to room temperature with a
step of 25 ◦C. At each point, the temperature was maintained for 10 min to record the data. Linear
fitting of the experimental results was conducted, achieving a fitting degree of 0.980. The slope of this
fit corresponds a sensitivity of S2 = 98.1 pm/◦C as shown in Figure 5c.
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Figure 5. (a) The transmission spectrum shift of the TLPFG versus temperature variations from 25 ◦C to
450 ◦C; (b) The resonance wavelengths shift shifts versus temperature variations from 25 ◦C to 450 ◦C;
(c) Polynomial term fitting of resonance wavelength as the temperature increased to 450 ◦C and then
cooled to 25 ◦C again; (d) The transmission spectrum of a TLPFG under various temperature conditions.

Temperature endurance was further investigated by heating the TLPFG to 700 ◦C and then cooling
it to room temperature. Figure 5d shows variations in the transmission spectrum during this process.
The grating degraded dramatically and the resonance dip disappeared entirely as the temperature
approached 700 ◦C, indicating the TLPFG could no longer function as an optical waveguide. The reason
may be that the Fs laser-induced index change here relaxes above 700 ◦C as reported in reference [14].
As the TLPFG was cooled down to room temperature, its transmission spectrum was gradually restored
but the resonance dip remained in a deteriorated state, due to the effects of high temperature. It also
indicates that the high temperature (>500 ◦C) may degrade the gratings spectra [14]. The proposed
TLPFG maintained a high-quality transmission spectrum demonstrating excellent thermal stability
as the temperatures below 450 ◦C. In contrast, TLPFGs fabricated with UV-light exhibit grating
degradation at temperatures below 100 ◦C. The primary reason is that refractive index changes caused
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by the focused irradiation of femtosecond pulses differ from those induced by UV-light induced [14].
As such, TLPFGs inscribed by Fs laser could be used for potential applications in the field of high
temperature sensing.

5. Torsion Sensing Characteristic

Optical fiber torsion sensors have been widely used in the automotive industry and for
anthropomorphic robotics applications, due to their advantages of being lightweight and immune
to electronic interference [33]. Several optical-fiber-based torsion sensors have been reported in the
past few years, including corrugated LPFGs, UV radiation-induced tilted fiber gratings, and Sagnac
interferometers [34]. However, many of these devices cannot effectively determine the direction
(clockwise or counter-clockwise) of the applied torsion, which limits their practical application.
For this reason, high-sensitivity sensors have been investigated to distinguish both the torsion angle
and direction simultaneously.

An experimental setup similar to that of Deng et al. [33] was used to investigate the torsion sensing
properties of our proposed TLPFGs. Measurements were conducted using electronic controllable
rotators which could twist the grating samples in two different rotate directions with a minimum
angle of 0.1◦. The distance between these two rotators (the twist length L) was equal to 55 mm in
our experiments. The rotation angle was denoted as α. Thus, the applied torsion τ could be written
as τ = α/L = α/0.055 ≈ 18α (rad/m). The rotation angle α was measured from 0◦ ± 240◦ with an
interval of 60◦. Positive angles represented the clockwise rotation, while negative angles indicated
counter-clockwise rotation. Figure 6a shows resonance wavelength shifts in the transmission spectra
as the torsion τ varied from −0.076 rad/mm (−240◦) to +0.076 rad/mm (+240◦). After each test,
the spectrum was shifted back to its original values (0◦). This process will cost about 2 min. It is
evident that the resonance wavelength with pattern of LP05 (as shown in Figure 2b shows a red shift
when the applied torsion is clockwise, and vice versa. Wavelength shifts are plotted in Figure 6b.
An approximately linear relationship (R2 = 0.934) was observed between the wavelength shift and
the applied torsion during both clockwise and counterclockwise rotation. As such, a linear fitting
was applied to the data. The resulting slope quantifies TLPFG torsion sensitivity, reaching a value of
48.94 nm/(rad/mm). This is twice as high as conventional non-tilted LPFGs inscribed in an SMF, with
an average of ~23 nm/(rad/mm) [33].
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6. Strain Sensing Characteristic

Applying strain to LPFGs along the axial direction leads to axially stretching, which causes
variations in the grating pitch Λ and the refractive index of both the core and cladding, due to
photo-elastic effects in the fiber. This induces resonant wavelength shifts in LPFGs, which have been
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used as strain sensors in multiple studies [35]. However, the strain properties of TLPFGs have not
been investigated as thoroughly. In this experiment, the employed TLPFG sample had a grating pith of
440 µm and a total of 30 periods. It posed LP05 cladding modes around the resonance dip of 1516.8 nm
similar to Figure 2c.

The strain sensitivity of the proposed TLPFG was investigated, using the strain measurement
setup discussed in our previous publication [36]. Two ends of the grating area were fixed by a two-
micrometer translation stage with a 5 µm resolution. The distance between them was 10 cm, and the
minimum strain change was ∆ε = 100 µε. As shown in Figure 7a, the resonance wavelength with
pattern of LP05 exhibited a blue shift for the applied strains ranging from 0 to 2500 µε, as recorded by
an OSA with a resolution of 0.02 nm. This implies that TLPFG can withstand a strain of 2500 µεwithout
breaking. It is noted that at each test point we need about 2 min to record the stable transmission
spectrum. Linear fitting of the experimental results was conducted, achieving a fitting degree of 0.995
as shown in Figure 7b. The slope of this fit corresponds a strain response of −0.63 pm/µε, which is
higher than the sensitivity of LPFG etched in SMFs by CO2 laser pulses (−0.45 pm/µε [37]). This
result support the use of TLPFGs as a strain sensor in practical applications.
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7. Conclusions

We have demonstrated a TLPFG fabrication method using an infrared femtosecond laser and a
line-by-line inscription technique. The resulting TLPFG exhibited a high-quality transmission spectrum
and excellent repeatability. The external refractive index, temperature, twist, and strain sensing
characteristics of the TLPFG were investigated experimentally. As the surrounding refractive index
gradually increased, the resonance wavelength of the TLPFG exhibits a blue shift with a sensitivity
of −602.86 nm/RIU at an external RI of ~1.435. The TLPFG could withstand a high temperature of
up to 450 ◦C, with a temperature sensitivity of 103.8 pm/◦C. It could also be used as a torsion sensor
capable of determining the twisting direction. Consequently, it is anticipated that the TLPFG-based
sensors could be used for a series of practical engineering applications.
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