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Abstract: We demonstrate a novel design and fabrication process for fiber-tip Fabry-Perot 
interferometric (FTFPI) pressure sensors which eliminates fringe envelopes in the reflection 
spectrum. The outer facet reflectivity and thickness of the FTFPI silica diaphragm were 
reduced through orthogonal rough-polishing of the fiber end facet. A silica FTFPI sample 
with a diaphragm thickness of ~10.7 μm was produced and tested under hydraulic pressures 
ranging from 0 to 30 MPa. The proposed sensor achieved a pressure sensitivity of −284 
pm/MPa at 1555 nm and could be a valuable new tool for high pressure measurements. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Optical fiber Fabry-Perot interferometric (FPI) sensors exhibit several characteristics which 
have attracted attention in recent years. They have been widely investigated for applications 
in a variety of fields, such as environmental monitoring, biomedical instruments, and 
mechanical engineering [1–7]. Among these, all-silica FPIs fabricated at the tip of an optical 
fiber are preferable for pressure measurements due to their small size, robust mechanical 
structure, and high sensitivity [8–11]. Pressure sensitivity is one of the most important 
properties of a fiber-tip Fabry-Perot interferometric (FTFPI) sensor. As such, recent studies 
have mostly investigated optimal structure types for the reflecting mirrors at the fiber ends. 
FTFPI pressure sensitivity can be increased by reducing the mirror thickness [12–14]. 

Reflection occurs at three interfaces in the flat silica diaphragm, with a thickness of 
several to tens of microns, located at the end of a short hollow core fiber (HCF). This three-
wave interference could potentially modulate the fringe envelope, affecting the measurement 
of peak or dip wavelengths [9] and the observation of spectral shifts [10]. To remove these 
unwanted reflections at the fiber end surface, Liu et al polished a single-mode fiber (SMF) 
facet to 8° [15]. Smith et al reported an ultra-small Fabry-Perot cavity written into optical 
micro-fibers, they removed the parasitic interference by cleaving the end of the micro-fiber 
using a focused-ion beam at an angle of 45° [16]. While oblique surfaces can reduce facet 
reflectivity, they can also affect the linear response of an FTFPI pressure sensor. In addition, 
tilting the fiber end facet is also a complex process. Hence, researchers proposed other ways 
to reduce the outer facet reflectivity, such as by increasing the roughness of the outer facet. 
For example, Xu et al proposed a novel diaphragm-based FPI pressure sensor which utilized 
hydrofluoric acid (HF) etching. Reflections from the exterior diaphragm surface can be 
neglected because the two surfaces are not parallel after cleaving. HF etching also produces a 
rough outside surface [17] and requires the use of hazardous chemicals. Sorin et al measured 
the absolute optical path differences (OPDs) between reflectors spaced along a single sensing 
fiber using a coherence-domain demodulation method [18]. However, this method exhibits a 
limited spatial resolution of ~10 μm, which is not sufficient for discriminating the parasitic 
interference in the FTFPIs with thin diaphragms [18,19]. Moreover, Shen et al proposed a 
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frequency estimation-based signal processing algorithm for multiplexed FPIs, to estimate the 
absolute OPDs [20]. Hence, the parasitic interference from different interfaces could easily be 
discriminated using this method. However, this approach always requires large computations, 
such as fast Fourier transformation (FFT) and/or digital filtering [21,22]. 

In this study, we propose a replicable technique for fabricating all-silica FTFPI high-
pressure sensors, avoiding fringe envelopes in the reflection spectrum. This device is 
produced by polishing the FTFPI end facet. This process not only decreases diaphragm 
thickness, which increases sensitivity, but also reduces diaphragm reflectivity which 
decreases noise. A polishing experiment demonstrated the facet reflectivity of a flat-end SMF, 
polished using a 9-μm-grit polishing paper, could be reduced below 5% compared with 
normal Fresnel reflection. The proposed sensor can also eliminate the influence of fringe 
envelopes. A silica diaphragm was produced with a thickness of 10.7 μm, achieving a 
pressure sensitivity of −284 pm/MPa over an applied pressure range of 0 to 30 MPa. 

2. Principles 
Figure 1(a) illustrates that there are three silica/air interfaces which can reflect light along the 
SMF. Surface 1 is the flat-end of the SMF, surface 2 and surface 3 are the inner and outer 
surfaces of the silica diaphragm, respectively. The reflectivity of the silica/air interface is so 
low (~3.5%) that we can neglect the impact of high-order FP interference. The total reflected 
electric field E and light intensity I can then be expressed as: 
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where E1, E2, and E3 are the field amplitudes of the light reflected by surface 1, surface 2, and 
surface 3, respectively. L is the length of the air cavity, na and ns are the refractive indexes of 
air and silica, respectively, d is the thickness of the silica diaphragm, and λ is the wavelength 
of the light. 

As shown in Eq. (1), the existence of E3 will introduce the parasitic interference. E3 can 
increase or decrease the intensity of the reflected light, modulating the reflection spectrum by 
inducing a fringe envelope. Fig. 1(b) illustrates the measured FTFPI spectrum from 1250 to 
1650 nm, in which the 0 dB level corresponds to a fiber end facet Fresnel reflection of ~3.5%. 
The FTFPI spectrum has a periodic fringe envelope, clearly showing the modulation caused 
by E3 [23,24]. Unlike in two-beam interference, this envelope can be used to determine the 
thickness of the silica diaphragm [25]. However, this modulated spectrum can lead to errors 
when estimating the actual cavity length L, by tracing the interfering minima or maxima in 
the spectrum [12]. Furthermore, low fringe contrast near the envelope valley may limit the 
use of spectrum demodulation, which is commonly applied in optical signal processing. 

The effects of the fringe envelope can be lessened by reducing the thickness of the silica 
diaphragm. When the silica is sufficiently thin, the envelope can be considered as the result of 
interference between surface 2 and surface 3. The interval between two adjacent valleys (or 
peaks) in the envelope can be expressed as λ2/2nsd [26]. Recently, we reported an FTFPI 
silica diaphragm with a thickness of below 180 nm [13]. The fringe envelope spacing in the 
reflection spectrum was larger than 2120 nm. The resulting modulated spectrum is difficult to 
measure using standard equipment. However, FTFPIs with ultra-thin diaphragms are not 
suitable for high-pressure applications. 
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6. Conclusion 
The fabrication process for an FTFPI pressure sensor without a fringe envelope in its 
reflection spectrum was proposed and experimentally demonstrated. The reflectivity of the 
end surface was reduced by polishing the outer facet of an FTFPI silica diaphragm, using 9-
μm-grit polishing paper, to a thickness of 10.7 μm. A high pressure response was observed 
from 0 to 30 MPa with a sensitivity of ~−284 pm/MPa. The benefits of this all-silica FTFPI 
include low fabrication cost, avoidance of a fringe envelope, high mechanical strength, and 
significant pressure endurance. As such, the proposed FTFPI device is an excellent candidate 
for performing pressure measurements in harsh environments. 
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