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Abstract: High-accuracy temperature measurement plays a vital role in biomedical, oceanographic,
and photovoltaic industries. Here, a highly sensitive temperature sensor is proposed and demon-
strated based on cascaded polymer-infiltrated Mach–Zehnder interferometers (MZIs), operating near
the dispersion turning point. The MZI was constructed by splicing a half-pitch graded index fiber
(GIF) and two sections of single-mode fiber and creating an inner air cavity based on femtosecond
laser micromachining. The UV-curable polymer-infiltrated air cavity functioned as one of the interfer-
ence arms of MZI, and the residual GIF core functioned as the other. Two MZIs with different cavity
lengths and infiltrated with the UV-curable polymers, having the refractive indexes on the different
sides of the turning point, were created. Moreover, the effects of the length and the bending way of
transmission SMF between the first and the second MZI were studied. As a result, the cascaded MZI
temperature sensor exhibits a greatly enhanced temperature sensitivity of −24.86 nm/◦C based on
wavelength differential detection. The aforementioned result makes it promising for high-accuracy
temperature measurements in biomedical, oceanographic, and photovoltaic applications.

Keywords: optical fiber sensor; fiber interferometer; femtosecond laser micromachining; dispersion
turning point; temperature measurement

1. Introduction

Temperature is one of the most common indicators used for condition monitoring in
biomedical, oceanographic, and photovoltaic industries [1–4]. There is a growing demand
for high-accuracy temperature sensors to investigate the process of dynamic change in these
cases. For example, the monitoring of the brain temperature is essential for the therapy
for patients with ischemic stroke [1]. Ocean temperature variation is an important basic
parameter for the human exploration of the ocean and provides necessary information to
investigate global climate changes [2]. In situ and continuous monitoring of the chemical
and thermal state of a cell during operation is crucial to ensure its safety [3,4]. Moreover, it
is beneficial for achieving the aforementioned high-accuracy temperature measurements by
using high-sensitivity temperature sensors, and hence they have attracted more and more
attention. The main types of commercial temperature sensors include thermocouples [5],
temperature-sensitive paint [6], and infrared thermal imagers [7,8]. However, such temper-
ature sensors have their own shortcomings. For example, they usually have large sizes and
are mainly focused on single-point temperature monitoring. Optical fiber-based devices
are more attractive for temperature sensing, owing to their compact size, the capability of
multiplexing, and immunity to electromagnetic interference.
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Fiber Bragg grating sensors are the most typical fiber-optic temperature sensors;
however, the temperature sensitivity of them is usually very low (~10 pm/◦C) [9]. To date,
Mach–Zehnder interferometers based on various in-fiber microstructures (i.e., internal air
cavities [10], tapers [11,12], and offset splicing joints [13]) have been proposed to achieve
a higher temperature sensitivity of ~2 nm/◦C. However, it is still limited by the low
thermo-optic coefficient (TOC) of silica (i.e., ~8.3 × 10−6 RIU/◦C) [14]. Hence, the fiber
interferometer infiltrated or covered with materials having large TOCs is considered a
better alternative for high-accuracy temperature measurements. For example, Shi et al.
reported a photonic crystal fiber (PCF) Sagnac interferometer by infiltrating all air holes
in PCF with ethanol and obtained a high temperature sensitivity of 16.81 nm/◦C [15].
Very recently, Cheng et al. proposed a tapered multicore fiber MZI interferometer covered
with PDMS and achieved a high temperature sensitivity of 25 nm/◦C [16]. Additionally,
a temperature sensitivity of up to −84.72 nm/◦C can be obtained by employing an MZI
temperature sensor based on a D-shaped cavity, which is filled with liquid [17]. However,
the aforementioned temperature sensors have typically poor thermal repeatability and
stability due to the volatility and fluidity of thermal-sensitive liquid material.

In this paper, we propose and demonstrate a highly sensitive temperature sensor
by cascading two UV-curable polymer-infiltrated Mach–Zehnder interferometers (MZIs)
operating near the dispersion turning point (DTP). The single MZI consists of two single-
mode fiber (SMF) pigtails, a half-pitch graded index fiber (GIF) that serves as an in-fiber
collimator, and an inner air cavity created by femtosecond laser micromachining. A cas-
caded MZI temperature sensor with cavity lengths of 60 and 80 µm in the first and the
second MZI was created. Moreover, two types of UV-curable polymers with the refractive
indexes of 1.460 and 1.540 were employed to infiltrate these two MZIs, respectively. The
UV-curable polymer-infiltrated air cavity functioned as one of the interference arms of MZI
and the residual GIF core functioned as the other. Moreover, the effects of the length and
the bending way of transmission SMF between the first and the second MZI were studied.
The temperature response results showed that such a cascaded MZI temperature sensor ex-
hibited a greatly enhanced temperature sensitivity of −24.86 nm/◦C based on wavelength
differential detection. The aforementioned result makes it promising for high-accuracy
temperature measurements in biomedical, oceanographic, and photovoltaic applications.

2. Materials and Methods

Generally speaking, refractive index (RI)-matching liquid is the typical thermo-sensitive
liquid material for the infiltration of in-fiber microstructures to obtain highly sensitive MZI
temperature sensors [16]. However, such a kind of thermo-sensitive liquid material is
not suitable for fabricating temperature sensors with great thermal stability and repeata-
bility, thus UV-curable polymer with better mechanical property has been investigated.
The UV-curable polymer (RI = 1.460) used in this work consists of photoinitiator 1173
(2-Hydroxy-2-Methyl-1-Phenyl-1-Propanone, as shown in Figure 1) with a mole ratio of
7–15%, oligomer (Acrylated Aliphatic Urethane) with a mole ratio of 45–55%, and acry-
late monomer (Hydroxypropyl Acrylate, HPA, as shown in Figure 1) with a mole ratio
of 40–50%. The UV-curable polymer (RI = 1.540) used in this work consists of oligomer
(Pentaerythritol Tetra(3-mercaptopropionate)) with a mole ratio of 30–50% and acrylate
monomer (Hydroxypropyl Acrylate, HPA) with a mole ratio of 36–60%. The absorption
spectra of the two types of UV-curable polymers used in this work were studied by using a
UV-Vis spectrofluorometer (METASH, UV8000), both showing a very high transmittance in
the visible and infrared wavelength range in Figure 1. Compared with other conventional
polymers, as shown in Table 1, the UV-curable polymer materials used in this work were
chosen owing to their superior characteristics, including the above-high light transmittance,
their large TOC, controllable RI, simple fabrication process, and low cost.
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Figure 1. Absorption spectra of the two types of UV-curable polymers used in this work.

Table 1. Properties of different types of polymers.

Polymer TOC (RIU/◦C) Refractive Index Reference

PMMA −1.3 × 10−4 1.48 [18,19]
PC −0.9 × 10−4 1.585 [20]

Silicone −1.3 × 10−4 1.492 [21]
The UV-curable polymers

used in this work −2 × 10−4 Could be controlled by
changing the density [22]

As illustrated in Figure 2, the proposed highly sensitive temperature sensor consists
of two MZI temperature sensors created by femtosecond laser micromachining, infiltrated
with the aforementioned UV-curable polymer, and cascaded by splicing together. The
working principle of the fabricated MZI temperature sensor is as follows. For example,
the two SMF pigtails (i.e., SMF1 and SMF2) of the first MZI (i.e., MZI1) serve as a lead-in
and lead-out fiber, respectively. A half-pitch GIF with a length of 490 µm serves as a
collimator, which can reduce insertion loss of MZI [23]. The light trajectory in the GIF is
quasi-sinusoidal, which implies that the mode area of the GIF reaches its maximum in the
quarter-pitch position and its minimum at the end of the GIF. Thus, on one lateral side
of the core of GIF in the quarter-pitch position, an inner air cavity was fabricated. As a
result, the UV-curable polymer-infiltrated inner air cavity functioned as the sensing arm
and the residual GIF core is used as a reference arm. The light intensity in the SMF2 can be
described as [24]:

I = I1 + I2 + 2
√

I1I2 cos(2πL1∆n1/λs), (1)

where I1 and I2 represent the beam power of the two interference arms, L1 is the air
cavity length, λs is the wavelength, ∆n1 = npolymer1 − ncore is the RI difference between
the UV-curable polymer (npolymer1) and GIF core (ncore = 1.491), and L1∆n1 is the optical
path difference (OPD) between two interference beams of the MZI1. The resonance dip
wavelength can be expressed as:

λm = 2L1∆n1/(2m + 1), (2)

where m is an integer, and λm is the wavelength of the mth order interference dip. The free
spectral range (FSR) of the interference fringe dip is determined by OPD, as:

FSR = λs
2/(L1∆n1). (3)
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Figure 2. Schematic diagram of the proposed highly sensitive temperature sensor based on cascaded
polymer-infiltrated MZIs operating near the DTP. (Inset: the calculated RI sensitivities of the MZI
infiltrated with polymers with different RIs).

The working principle of the second MZI (i.e., MZI2) is the same as MZI1 and λL is
the dip wavelength of MZI2. When the transmission light is injected into the MZI2, the
interference signals are combined into the whole spectrum. Using a curved transmission
SMF (i.e., SMF2) can further suppress the multimode interference noise. Moreover, the RI
sensitivity can be derived from Equation (2) as dλm/d(∆n1) = λm/∆n1 and the calculated
results are shown in the inset of Figure 2. Note that, the RI sensitivity of the UV-curable
polymer-infiltrated MZI at the DTP of 1.491 tends to be infinite and is opposite in signs
on the different sides of DTP. Furthermore, the temperature sensitivity of MZI can be
derived as:

dλm/dT = (λm/∆n1(T))·(δpolymer1 − δcore), (4)

where ∆n1(T) = npolymer1(T) − ncore(T) is the RI difference between the UV-curable poly-
mer and GIF core under temperature T, δpolymer1 is the TOC of UV-curable polymer
(~−2 × 10−4 RIU/◦C) [22] and δcore is the TOC of silica (~8.3 × 10−6 RIU/◦C) [14]. As a
result, the temperature sensitivity is also opposite in signs on the different sides of DTP.
Hence, the air cavity lengths of MZI1 and MZI2 are designed to be 60 µm and 80 µm,
respectively. Moreover, the RI of the UV-curable polymers used in MZI1 and MZI2 are
chosen to be 1.460 and 1.540, respectively.

Figure 3 illustrates the fabrication process of a cascaded polymer-infiltrated MZI
temperature sensor, which involves four steps [25,26]. In step 1, as shown in Figure 3a1,
a conventional SMF was spliced to a section of a GIF with a core diameter of 62.5 µm
by means of a commercial fusion splicer. The spliced configuration was then cleaved to
the length of 490 µm (i.e., half-pitch length) by using the precision cleaving configuration.
Then, the well-cleaved end of the GIF was spliced to another SMF. The corresponding
microscope image is shown in Figure 3b1. In step 2, as shown in Figure 3a2, a rectangular
inner air cavity was obtained in the quarter-pitch position of GIF by femtosecond laser
micromachining. The wavelength, pulse width, and repetition of the used femtosecond
laser (Spectra-Physics) are 800 nm, 120 fs, and 1 kHz, respectively. An average on-target
laser power of 15 mW was applied. The top-view and side-view microscope images of the
fabricated MZI1 are shown in Figure 3b2. In step 3, as shown in Figure 3a3, the inner air
cavity was infiltrated by the UV-curable polymer, and then cured by UV illumination for
1 h. Moreover, thermal annealing at 50 ◦C for 12 hours was applied, intended to obtain
a thermal stable MZI temperature sensor. Figure 3b3 shows the microscope image of the
UV-curable polymer-infiltrated MZI2. In step 4, as shown in Figure 3a3, the MZI1 and MZI2
were cascaded by splicing the two SMF pigtails together. Furthermore, the SMF (i.e., SMF2,
as shown in Figure 2) between MZI1 and MZI2 was bent.
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Figure 3. (al–a3) Schematic diagram of the fabrication process of a cascaded polymer-infiltrated MZI
temperature sensor: (al) in step 1, a half-pitch GIF was spliced to two sections of SMF; (a2) in step 2,
an inner air cavity was created by femtosecond laser micromachining; (a3) in step 3 and step 4, the
air cavity was infiltrated with UV-curable polymer and two MZI temperature sensors were cascaded.
(b1–b3) The corresponding microscopic images of a cascaded polymer-infiltrated MZI temperature
sensor fabricated after step 1–3, respectively.

3. Experiments and Results

We fabricated four cascaded MZI samples S1, S2, S3, and S4 with decreasing lengths of
transmission SMF (i.e., SMF2) between MZI1 and MZI2 of 200, 80, 50, and 20 cm, respectively.
The effect of air cavity lengths on the performance of MZIs has been well studied in the
previous work [25]. Taking the factors (including a smaller FSR, an acceptable insertion
loss, and the measurement range of the optical spectrum analyzer) and the results deduced
from Equation (3) into consideration, the air cavity lengths of MZI1 and MZI2 of these
cascaded MZI samples are designed to be 60 µm and 80 µm, respectively. As shown in
Figure 4, the transmission spectra of the cascaded MZI samples were investigated based on
an amplified spontaneous emission (ASE) light source (FiberLake) and an optical spectrum
analyzer (OSA, YOKOGAMA). The cascaded MZI sample was fixed onto a slide glass by
employing UV-curable polymer on the two leading fibers and SMF2 (as shown in the inset
of Figure 4). Note that the light directed into MZI1 excites several modes. A part of light
transmits into the core of SMF2 as the fundamental mode, while another part propagates
in the cladding as the high order mode. When the transmission light is directed to MZI2,
multimode interference noise is excited. As shown in Figure 5, the multimode interference
noise in the spectrum increases as the length of SMF2 decreases, and relatively smooth
spectrum can be obtained when SMF2 was in the bent state, whatever the length of it is.
Moreover, to reduce the temperature measurement errors, the length of SMF2 was set to be
20 cm ultimately.

Figure 4. Schematic diagram of the experimental setup for measuring the transmission spectra of
the cascaded MZI samples. (ASE: amplified spontaneous emission, OSA: optical spectrum analyzer,
inset: schematic diagram of the cascaded MZI samples).
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Figure 5. Transmission spectra of four fabricated cascaded MZI samples S1, S2, S3, and S4 with
decreasing lengths of transmission SMF (i.e., SMF2) between MZI1 and MZI2 of 200, 80, 50, and 20 cm,
respectively, in the straight and bent state.

Furthermore, we investigated the cascaded MZI samples S5, S6, and S7 obtained
with varying bending ways of 20 cm long SMF2. The bent SMF2 serves as a transmission
fiber and a mode stripper, having the ability to strip the high-order modes effectively
due to their large bend losses [27]. As shown in Figure 6, there are still large multimode
interference noises in the spectra of the two samples with balloon-shaped bent SMF2 and
water-drop-shaped bent SMF2, respectively. The result indicates that when the SMF2 was
in the circular bent state with a radius of ~3.2 cm, the high-order modes in SMF2 exhibited
larger bend losses compared to other bending ways, and hence the multimode interference
noises in the spectrum of cascaded MZI temperature sensor can be suppressed effectively.
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Subsequently, we investigated the temperature response of a cascaded MZI tem-
perature sensor by putting it into a high-precision oven (accuracy: up to 0.1 ◦C). The
temperature was varied from 22 to 29 ◦C and was maintained for 20 min at each mea-
surement point. As shown in Figure 7a, it is obvious that λS exhibits a ‘red’ shift with
increasing temperature and a ‘blue’ shift with decreasing temperature. It can be seen from
Figure 7b that the temperature sensitivities of λS are 10.08 nm/◦C and 9.76 nm/◦C in the
heating and cooling processes, respectively. However, the evolution of the dip wavelength
λL is in contrast and the temperature sensitivities are −14.78 nm/◦C and −14.98 nm/◦C,
respectively. It can be seen from Equation (4) that the positive temperature sensitivity of
MZI1 results from the RI difference ∆n1 < 0, and the TOC of the UV-curable polymer is
negative (~−2 × 10−4 RIU/◦C) [22]. In contrast, the negative temperature sensitivity of
MZI2 results from the RI difference ∆n2 > 0.
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Figure 7. (a) Transmission spectra evolutions of the cascaded MZI temperature sensor in the case of
temperature cycling from 22 to 29 ◦C; (b) temperature response of the dip wavelengths λS and λL in
the transmission spectrum of the cascaded MZI temperature sensor.

Figure 8 shows the differential wavelength (i.e., λL − λS) of the cascaded MZI tem-
perature sensor as a function of the temperature in the case of temperature cycling from
22 to 29 ◦C. It can be seen that the data could be well fitted by linear functions. It is
obvious that the cascaded MZI temperature sensor exhibits greatly enhanced temperature
sensitivities of −24.86 nm/◦C and −24.74 nm/◦C in the heating and cooling processes,
respectively, based on wavelength differential detection. The temperature sensitivities are
almost twice that of a single MZI temperature sensor [25,26]. Hence, a highly sensitive
MZI temperature sensor could be obtained based on cascading and wavelength differential
detection. Moreover, it should be noted that a narrow temperature range of 22–29 ◦C was
performed in the experiment. However, the operating temperature range of the proposed
cascaded MZI temperature sensor could be further extended to a wider range from −80 to
70 ◦C by using a broadband OSA or an intensity demodulation method [25].
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4. Conclusions

We have proposed and demonstrated a highly sensitive temperature sensor by cas-
cading two UV-curable polymer-infiltrated MZIs operating near the DTP. The effects of
the length and the bending way of transmission SMF between the first and the second
MZI were studied. After optimizing these parameters, a cascaded MZI temperature sensor
without multimode interference noises in the transmission spectrum was obtained. The
temperature test showed such a cascaded MZI temperature sensor has a greatly enhanced
temperature sensitivity of −24.86 nm/◦C, based on wavelength differential detection.
Hence, the simple fabrication process, compact size, and ultrahigh temperature sensitivity
of the proposed cascaded MZI-based temperature sensor would make it eminently suitable
for utilization for high-accuracy temperature measurements in biomedical, oceanographic,
and photovoltaic applications.
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