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A B S T R A C T   

Tiny and soft breath sensors offer unique capabilities in a continuous and long-term recording of vital physio-
logical parameters for human health monitoring. Here, we propose an all fiber-optic breath sensor based on 
helical intermediate-period fiber grating (E-HIPFG) written in an elliptic core polarization-maintaining fiber. 
This E-HIPFG-based breath sensor shows ultrafast response time and recovery time, which are 34.46 ms and 
41.34 ms, respectively. The response time and recovery time are three orders faster than the corresponding 
values of conventional optical fiber-based breath sensors with humidity-sensitive material. In addition, this 
sensor does not combine with any additional coating materials or fiber architectures, increasing the stability in a 
continuous and long-term detection for breath monitoring. The E-HIPFG sensor is insensitive to external in-
fluences, such as temperature, torsion and strain, endowing the possibility of stable detection in the moving 
body. Particularly, the temperature sensitivity of the sensor is 2.75 pm/◦C, which is two orders lower than the 
corresponding value of previous reports. Due to its considerable stability, quick response, and insensitivity to 
external influences, the E-HIPFG-based breath sensor offers significant potential for long-term and compact 
breathing monitoring devices.   

1. Introduction 

Stable long-term monitoring of breath can provide practical diag-
nostic information for patients with breath disorders, heart failure or 
health rehabilitation training [1–3]. Spirometry, pneumotacography, 
and optoelectronic plethysmography are the frequently used techniques 
at present, which are normally complicated, high cost and bulky [1,2,4]. 
In addition, mouthpieces, masks, and other equipment needed by the 
medical system may interfere with natural breathing and limit human 
activities. In addition, external equipment, such as mouthpieces and 
masks are required by the medical system, conventional pressure-based 
breath sensors frequently suffer from the sensor strain and deformation 
brought by human body movement [5,6], making them unsuitable for a 
long-term wearable device. 

Based on the previous research reported by Maiti et al., water 

molecules account for a larger proportion in the breath air than other 
trace chemicals [7]. Therefore, alternative strategies for breath monitors 
based on the humidity difference between indoor humidity (30-60% 
RH) and human exhalation (around 70–90%RH) under the nose have 
been intensively investigated [8]. The research and development of 
humidity sensing have a long history [9–11], and there is a variety of 
sensing technologies that have achieved industrial-related humidity 
measurements, such as mechanical hygrometers, chilled mirror hy-
grometers, and wet and dry bulbs psychrometers. However, these 
traditional methods are either unstable in environmental conditions or 
susceptibility to surface contaminations, or unwearable [12]. In this 
case, the optical humidity sensor has the characteristics of 
anti-electromagnetic interference, high repeatability, small size, strong 
adaptability, and quick response [13–22]. 

Over the past three decades, numerous optical fiber-based humidity 

* Corresponding author at: Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, College of Physics and Optoelectronic 
Engineering, Shenzhen University, Shenzhen 518060, China. 

E-mail addresses: shenliu@szu.edu.cn (S. Liu), baizhiyong@szu.edu.cn (Z. Bai).   
1 orcid.org/0000-0001-9266-2498  
2 orcid.org/0000-0002-0915-751X 

Contents lists available at ScienceDirect 

Sensors and Actuators: B. Chemical 

journal homepage: www.elsevier.com/locate/snb 

https://doi.org/10.1016/j.snb.2022.132372 
Received 20 April 2022; Received in revised form 21 June 2022; Accepted 12 July 2022   

mailto:shenliu@szu.edu.cn
mailto:baizhiyong@szu.edu.cn
www.sciencedirect.com/science/journal/09254005
https://www.elsevier.com/locate/snb
https://doi.org/10.1016/j.snb.2022.132372
https://doi.org/10.1016/j.snb.2022.132372
https://doi.org/10.1016/j.snb.2022.132372
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2022.132372&domain=pdf


Sensors and Actuators: B. Chemical 369 (2022) 132372

2

sensors for breath monitoring have been proposed and developed 
tremendously. Arregui et al. proposed an optical fiber humidity sensor 
based on Fabry-Perot structure coated with ionic self-assembly poly-
meric material. Their result demonstrated a response time of 1.5 s in 
humidity monitoring [13]. In 2018, Dissanayake et al. prepared 
long-period gratings (LPFG) with a grating length of 25 mm, which 
showed 0.15 dB/% RH and 0.32 nm/◦C for humidity and temperature 
after coating the surface with GO [19]. Du et al. investigated a length of 
15 mm etched single-mode fiber (SMF) coated with MoS2 to detect 
breath, achieving a response of 0.066 s and a recovery time of 2.395 s 
[22]. More recently, in 2020, the team also tested the relative humidity 
of 11–92%RH using gold nanomembrane onto the end-face of optical 
fiber and found that the response time and recovery time were 156 ms 
and 277 ms, respectively [21]. Nevertheless, most of those optical 
fiber-based humidity sensors are based on the adsorption and desorption 
of water molecules by the moisture-sensitive materials on the transducer 
surface, which prolongs the sensing response time. In clinical practice, 
the breath cycle is about 3–5 s, which means a higher requirement for 
breath response or recovery time in such a short period so as to restore 
the signal with as little loss of authenticity as possible. In addition, the 
utilization of moisture-sensitive materials leads to a more complex 
sensor structure and reduces the sensor’s mechanical strength and 
compactness, subsequently decreasing the sensor stability for long-term 
monitoring and limiting their practical application. 

This work introduces a compact, high stability, and ultrafast- 
response fiber-optic breath sensor based on an elliptic core helical 
intermediate-period fiber grating (E-HIPFG). The topographic charac-
teristics and optical features of the E-HIPFG-based breath sensor, which 
is fabricated by hydrogen-oxygen flame heating, are analyzed at first. 
The stability of the HIPFG is demonstrated with considerably low 
sensitivity to environmental disturbances, including temperature, 
strain, and torsion. The response time and recovery time are further 
studied to access the sensing performances for real human breath 
monitoring. The results demonstrate that the E-HIPFG-based breath 
sensor has considerable stability, ultrafast-response, and insensitivity to 
environmental factors, and is promising for long-term and compact 
breathing monitoring devices. 

2. E-HIPFG fabrication 

The E-HIPFG was fabricated on an elliptical core polarization- 
maintaining fiber (PMF) (Yangtze Optical Electronic Co., Ltd.) with 
two-fold symmetry in the cross-section, as shown in Fig. 1(a). The 
elliptical core diameters along the major and minor axes of the PMF are 
9.6 and 5.0 µm, respectively. The E-HIPFG was fabricated by a 
hydrogen-oxygen flame heating system, consisting of a high-precision 
rotator, two translation stages, and a hydrogen generator (Model TH- 
500, China). The fabrication process was detailed described in our 
previous reports [23,24]. Briefly, the PMF is fixed on two translation 
stages. When the translation stages were working with velocities of V1 =

1.10 mm/s and V2 = 1.20 mm/s, and the rotation motor was rotating at 
a speed of 2057 rpm, the hydrogen-oxygen flame produced by the 
hydrogen generator was employed to heat the fiber to its melting point. 

After the grating was inscribed on the fiber, the size of the major and 
minor axes of the fiber core was reduced to 8.7 µm and 4.9 µm, 
respectively. And the cladding diameter was reduced from 120 to 
110 µm, as shown in Fig. 1(b). Then both ends of the 2.02 mm-grating 
length E-HIPFG were spliced with SMF, as shown in Fig. 1(c). The E- 
HIPFG has a helical pitch of 17.5 µm, as illustrated in scanning electron 
microscope images Fig. 1(d). The torsion deformation caused by stress 
was manifested in the periodic physical deformation on the fiber surface 
and periodic perturbations in the fiber core. Because the gratings in the 
intermediate period were written on the elliptical core PMF with the 
intrinsic major and minor axes structure of the fiber core, the bi-taper of 
E-HIPFG within a helical period is more obvious than the SMF under a 
microscope observation [25,26]. 

The E-HIPFG was launched by an amplified spontaneous emission 
source (ASE, NKT Photonics) and its transmission spectra were recorded 
by an optical spectrum analyzer (OSA, YOKOGAWA, AQ6370C) with a 
resolution of 0.05 nm. The transmission spectrum of the E-HIPFG in the 
air is shown in Fig. 2. In a wavelength range of 1300–1650 nm, four 
resonant dips appear at 1351.7 nm (Dip-1), 1432.01 nm (Dip-2), 
1519.13 nm (Dip-3), and 1611.16 nm (Dip-4) and the maximum atten-
uation is 31.335 dB at the Dip-4. These resonant dips result from the 
optical coupling between the fundamental core mode and cladding 

Fig. 1. The topographic characteristics of the E-HIPFG. Scanning electron micrographs of the cross-section of the elliptical core PMF (a) before and (b) after E-HIPFG 
inscribed in, (c) the total view of the E-HIPFG observed by microscope, inset figure is the enlarged view of the fiber core, (d) the side-view of the E-HIPFG. 
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mode in the fiber in the phase-matching condition, and the resonance 
wavelengths of these dips can be expressed as [27]. 

λres =
(

neff
co − neff

cl,m

)
Λ  

where, λres is the phase-matched resonance wavelength corresponds to 
the mth cladding mode; neff

co and neff
cl,m corresponds to the effective 

refractive index of the fundamental core mode and the mth cladding 
mode respectively; Ʌ is the grating period, which can be achieved by the 
formula of Ʌ= 30 V2/Ω, where is the velocities of translation stages and 
Ω is the speed of rotating. By comparing the grating period of HIPFG in 
SMF prepared under the same fabrication parameters, E-HIPFG has a 
half grating period due to the unique double symmetric structure of the 
elliptic core of the PMF. Therefore, the number of periods of E-HIPFG is 
twice more than that of HIPFG in the case of the same grating length, 
which reduces the grating length and optimizes the integration char-
acteristics for portable breath monitors. 

3. Sensing properties of the E-HIPFG-based breath sensor 

3.1. RI sensitivity 

Since breath monitoring of the E-HIPFG is based on a change of the 
effective RI induced by breath, describing the E-HIPFG’s RI sensitivity is 
required. The RI matching liquids (Cargille Labs) with an RI from 1.300 

to 1.370 were utilized to obtain the RI sensitivity. In the measurement, 
the whole E-HIPFG sample was immersed in the RI matching solution 
and the transmission spectra covering from 1300 nm to 1650 nm were 
recorded. After each measurement, a careful clean-and-dry process was 
conducted to remove residual liquid on the surface of the device until 
the transmission spectrum returns to its original. 

Fig. 3(a) illustrates the resulted spectra around Dip-4 in various RI 
matching liquids, where a redshift happens to the resonance wave-
length. The function of resonant wavelength versus surrounding RI is 
shown in Fig. 3(b). Similar to the research of Zou [28], the resonant 
wavelength drift increases nonlinearly with the increase of the sur-
rounding RI. 

Among those dips, the average refractive index sensitivities of the 
four resonant wavelengths are 176.43 nm/RIU at Dip-1, 233.0 nm/RIU 
at Dip-2, 331.7 nm/RIU at Dip-3 and 380.29 nm/RIU at Dip-4, respec-
tively. Within the same refractive index range, it can be seen that when 
the surrounding refractive index is smaller than the cladding refractive 
index, the resonant wavelength of long wave length changes more for 
the external refractive index, and its perception ability of minor alter-
ations is better than the resonant wavelength of shorter wavelength, 
which is consistent with the analytical formula [29]. 

dλres

dnsur
= λres⋅γ⋅Γsur 

Therefore, the Dip-4 with maximum sensitivity 380.29 nm/RIU is 
chosen to evaluate the detection performance of the E-HIPFG sensor. 
Compared with the HIPFG reported by Zou in 2021 [28], In 2020, Luo 
et al. used arc discharge (EAD) technology to fabricate long-period fiber 
gratings in thin-clad fibers to obtain sensing characteristics with RIS of 
− 51.72 nm/RIU [30]. Wang et al. proposed a core-shift microstructure 
interferometer sensor with its RIS of 56.325 nm/RIU [31]. The average 
RIS of E-HIPFG suggested in this study is approximately 7 times that of 
the research results of Luo and Wang. On the other hand, the RIS with 
interferometers normally have much higher RIS than the E-HIPFG. 
However, those interferometers often suffer from high temper-
ature-cross-sensitivity. Luo et al., fabricated a Mach–Zehnder interfer-
ometer (MZI) on multi-mode fiber with the RIS of 2576.584 nm/RIU and 
the temperature sensitivity of 0.193 nm/◦C [32]. Another MZI in 
single-mode fiber developed by Liao et al. has a RIS of 4202 nm/RIU and 
the temperature sensitivity of 41 pm/◦C [33]. The E-HIPFG in this work 
gives a low temperature sensitivity of 2.79 pm/◦C, which is two orders 
lower than Luo’s research results and one-fifteenth of that of Liao’s. The 
details will be explained in Section 3.3. 

Fig. 2. The transmission spectrum of E-HIPFG in air.  

Fig. 3. (a) Dip-4 spectra at RI range from 1.300 to 1.370; (b) Relationship between resonant wavelength and the surrounding RI.  
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3.2. Breath monitoring 

The humidity experiment was carried out in a sealed box at room 
temperature. An optical power meter (Keysight, N7744A) with a reso-
lution of 0.3 pm and a tunable laser (Keysight, 81940A) were used to test 
and record the relationship between humidity and spectrum drift of E- 
HIPFG at 10–99% RH, as shown in Fig. 4(a). Fig. 4(b) illustrates the 
transmission spectra of the E-HIPFG around Dip-4 in the humidity range 
of 60–99%RH. The resonant wavelength gradually redshifts with the 
increase of humidity, and the peak of coupling wavelength and humidity 
shows a non-linear relationship which is similar to Bao’s research in 
2021 [34]. Notably, the wavelength shift at humidity below 60%RH is 
nearly a constant because the RI change caused by low water vapor 
concentration is unnoticeable. When the humidity is over 60%RH, 
which is the humidity range close to normal human breath [8], the 
wavelength shift increases significantly. In the humidity range of 
60–99%RH, the wavelength shift and the humidity present an index 
function with the maximum sensitivity of 4.78 pm/%RH at 99%RH. 

To further assess the sensing performance of the E-HIPFG sensor, the 
reaction time and recovery time, which are essential parameters for real 
human breath monitoring, are investigated by a system with a tunable 
laser (Agilent 81940A), photodetector (PD, Newport Model 1544-B) and 
oscilloscope (Tektronix, MDO3054) as shown in Fig. 5(a). In the test, the 
E-HIPFG was inserted in bi-nasal intubation shown in Fig. 5(b) and fixed 
to the volunteer’s nose, as shown in the inset figure of Fig. 5(a). Fig. 5(c) 
shows the E-HIPFG illuminated with white light, demonstrating the 
sensor’s device size through colored diffraction light. The wavelength of 
the tunable laser was fixed at 1611.16 nm, which is the resonance 
wavelength of Dip-4 in an air medium. The wavelength shift of Dip-4 
was monitored with inhaled and exhaled human breath at room 
temperature. 

The breath status of volunteers during rest (normal breathing), 
strenuous exercise (rapid breathing), and complete relaxation (slow 
breathing) were monitored for 20 s by the E-HIPFG and the response 
features are shown in Fig. 6(a)-(c). The time responses in a single breath 
were shown in Fig. 6(d)-(f). The breathing frequencies were obtained by 
Fast Fourier transforms (FFT) (see Fig. 6(g)–(i)). 

At rest state, the response time and the recovery time of normal 
breathing are determined to be approximately 54.56 ms and 64.70 ms as 
shown in Fig. 6(d). Through FFT, the breathing frequency of volunteers 
can be clearly and succinctly identified. It can be seen that the normal 
breathing rate is 0.25 Hz, which is consistent with the range of human 
breathing frequency (12–20 breaths per minute). In a strenuous exercise 
state, the breath period is much shorter than normal breath, as presented 

in Fig. 6(b). In this state, the response time and the recovery time are 
34.46 ms and 41.34 ms, respectively. And the breathing rate is 1.05 Hz. 
When the volunteer is completely relaxing, the response time, the re-
covery time, and breath frequency are 253.56 ms, 346.72 ms and 
0.15 Hz. The response time and recovery time of the breath sensor are 
shortened with the increase of breath frequency with the fastest 
response time and recovery time being 34.46 ms and 41.34 ms. This 
may be because in a faster breath state, the humidity near the volun-
teer’s increases faster than the slower one’s. In summary, the varied 
breath states are represented by the different response durations and 
breath frequencies, suggesting that the proposed sensor can achieve 
high resolution and accuracy for real-time breath monitoring. 

3.3. Anti-interference capacity test 

Since the phase-matching condition shows that the resonant wave-
length is primarily determined by the effective refractive index of the 
coupling mode and the grating period, any change in the strain, tem-
perature, twist caused by body movement may result in a large shift in 
the resonance wavelength shift. Therefore, the effect of those factors on 
the E-HIPFG should be evaluated before sensing application. Firstly, the 
temperature response of the prepared E-HIPFG was investigated by 
putting it into a column oven (LCO 102, ECOM) with a temperature 
range from 25◦ to 95◦C. The transmission spectra of the E-HIPFG were 
recorded when the temperature was stabilized for 10 min with the step 
of 10 ◦C, as shown in Fig. 7(a). The resonant dip of the E-HIPFG redshifts 
and the coupling strength becomes deeper when the temperature in-
creases from 25 ◦C to 95 ◦C. Fig. 7(b) presents the function of resonance 
wavelength shift with the temperature increase. The temperature 
sensitivity of E-HIPFG is calculated to be 2.79 pm/◦C according to the 
slope of the fitting line. In a realistic application, the greatest tempera-
ture difference between inhaled and exhaled air is less than 3 ◦C [35], 
hence the wavelength shift induced by temperature difference is less 
than 8.4 pm, which is about 10% of the wavelength shift generated by 
humidity (approximately 86 pm). The variation in temperature has no 
significant effect on the frequency characteristics of breath with such a 
measurement error. 

On the other hand, in the process of sensor packaging before appli-
cation, there will be strain and torsion differences before and after the 
procedure. In addition, differences in the packaging process result in 
different strains and torsions that will affect the uniformity of the sensor. 
Therefore, insensitivity to strain and torsion characteristics are essential 
for the sensor’s stability and uniformity. In the torsion test, a rotating 
fixture was applied to rotate E-HIPFG to + 360◦ at first. Then the E- 

Fig. 4. (a) The relationship between wavelength shift and humidity; (b) The transmission spectra of the E-HIPFG around Dip-4 in the humidity range of 60–99%RH.  
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HIPFG was twisted from + 360◦ to − 360◦ with a step of 30◦. The torsion 
rate is defined as γ = θ/L, which means to represent the torsional stress 
applied per unit length, where θ is the rotation angle, and L is the dis-
tance between two fixed points, which is 20 cm. The rotation has the 
same direction (+360◦− 0◦) with the HIPFG sample torsion is defined as 
clockwise rotation and counterclockwise versa (− 360◦− 0◦). The resul-
ted spectra and the function between wavelength shift and torsion are 
represented in Fig. 7(c) and (d), with the torsion sensitivity determined 
to be − 23.937 nm/(rad/mm). Similar to the torsion experiment, the 
transmission spectra of E-HIPFG were collected with the strain range 
0–2000 με by adjusting the coaxial moving distance with a high- 
precision displacement platform. As shown in Fig. 7(e) and (f), with 
the application of transverse strain, the wavelength of E- HIPFG blue-
shifts and the coupling depth deepens, and the strain sensitivity is 

0.588 pm/με by fitting the dip of wavelength change with the corre-
sponding slope. 

3.4. Sensing properties comparison 

The sensing properties of the humidity sensor based on LPFG are 
compared in this part, with the details listed in Table 1. As we mentioned 
in Section 1, most of the humidity sensors are combined with moisture- 
sensitive materials, which prolong the response times and recovery 
times. The E-HIPFG-based breath sensor described in this paper has 
outstanding response and recovery times, which are nearly three orders 
faster than the valued of the previous breath sensor explored by Xu in 
2021 [36]. The response time and recovery time of the E-HIPFG-based 
sensor are also improved when compared to conventional optical 

Fig. 5. (a) The breath experiment setup; (b) Detail view of the Bi-nasal intubation and unapplied E-HIPFG; (c) Partial enlargement of E-HIPFG.  

Fig. 6. The real-time response of the E-HIPFG-based breath sensor to normal breathing (a), rapid breathing (b), and complete slow breathing (c) were monitored, and 
their time responses in a single breath (d-f), and their breathing frequencies (g-i). 

S. Liu et al.                                                                                                                                                                                                                                       



Sensors and Actuators: B. Chemical 369 (2022) 132372

6

fiber-based sensors, as shown in Table 1. The fast response time and 
recovery time can be attributed to the fact that the E-HIPFG sensor does 
not use any sensitive material, reducing the time to absorb and desorb 
water molecules. Furthermore, the inaccuracy generated by the inter-
action of sensitive material with water molecules can be avoided, 
resulting in increased sensing accuracy. In particular, in 2019, Theo-
dosiou introduced a humidity sensor based on LPFG that did not require 
coating sensitive material but had a relatively lengthy response and 
recovery time. Furthermore, the E-HIPFG-based sensor also shows fairly 
low temperature, torsion, and strain sensitivity. Notably, the sensor’s 
temperature sensitivity is 2.75 pm/◦C, which is two orders lower than 
prior reports’ values [37–40]. The E-HIPFG can be a contender for 
building novel high stability sensors due to its quick reaction time and 
recovery time as well as low temperature, torsion, and strain sensitivity, 
allowing it to be integrated into breathing equipment such as breathing 
tubes, oxygen masks, and nasal straws. 

4. Conclusion 

The E-HIPFG-based breath sensor, without external materials or 
restructuring, is proposed and demonstrated with considerable stability 

and ultra-fast response time and recovery time. The sensor presents a 
superior response time of 34.46 ms and a recovery time of 41.34 ms, 
which are much faster than these values of the conventional optical 
fiber-based methodologies. The stability of the sensor is demonstrated 
by its insensitivity to low sensitivity to temperature, torsion, and strain, 
which makes it stable for wearable and mobile sensing in compact de-
vices. Furthermore, this sensor does not require any extra coating ma-
terials or fiber designs, resulting in increased stability in continuous and 
long-term breath monitoring detection. Therefore, E-HIPFG shows a 
better performance for real-time breath monitoring, attributed to its less 
chemical modification and intrinsic chemical stability. Hence the pro-
posed breath monitor can be considered to have a broad application 
prospect in breath monitoring and portable medical devices due to its 
exceptional sensing properties. 
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