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Abstract: Over decades, fiber-optic temperature sensors based on conventional single-mode fibers
(SMF) have been demonstrated with either high linearity and stability in a limited temperature
region or poor linearity and thermal hysteresis in a high-temperature measurement range. For high-
temperature measurements, isothermal annealing is typically necessary for the fiber-optic sensors,
aiming at releasing the residual stress, eliminating the thermal hysteresis and, thus, improving the
high-temperature measurement linearity and stability. In this article, an annealing-free fiber-optic
high-temperature (1100 ◦C) sensor based on a diaphragm-free hollow-core fiber (HCF) Fabry-Perot
interferometer (FPI) is proposed and experimentally demonstrated. The proposed sensor exhibits
an excellent thermal stability and linearity (R2 > 0.99 in a 100–1100 ◦C range) without the need
for high-temperature annealing. The proposed sensor is extremely simple in preparation, and the
annealing-free property can reduce the cost of sensor production significantly, which is promising in
mass production and industry applications.

Keywords: high-temperature sensor; hollow-core fiber; annealing-free

1. Introduction

Measurements of high temperatures are of great significance in a variety of industrial
applications, such as aerospace [1] and petrochemical engineering [2]. Over the past few
decades, various fiber-optic sensors have been developed for high-temperature measure-
ments, such as ultrafast laser-induced fiber Bragg gratings (FBGs) [3,4], sapphire FBG [5],
long-period fiber gratings inscribed into a non-photosensitive fiber by a CO2 laser [6] or
arc discharge [7], fiber Mach-Zehnder interferometers (MZIs) [8,9] and fiber Fabry-Perot
interferometers (FPIs) [10,11]. However, fiber-optic high-temperature sensors that are
based on the conventional single-mode fiber (SMF) suffer a poor linearity and stability in
high-temperature regions before annealing treatments [12,13]. This can be attributed to the
residual stress releasing and different thermo-expansion coefficients of the fiber cladding
(silica) and Ge-doped core when the fiber is heated to the softening point temperature of
the material [14,15]. To eliminate the residual stress and improve the sensor’s linearity and
stability, the isothermal annealing treatment is necessary and effective [16]. Moreover, to
avoid the introduction of extra stress during the annealing process, the speed of heating
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and cooling is strictly limited due to the different thermo-expansion coefficients of the fiber
core and cladding.

Alternatively, the naissance of the hollow-core fiber (HCF), which is constitutive of
pure silica without any ion doping [17], brings about a new base for fiber-optic high-
temperature sensors. For instance, in 2011, M. Ferreira proposed an HCF-based diaphragm-
free FPI that can work in 1000 ◦C [18]. However, the unbefitting HCF make the FPI exhibit
a poor fringe visibility (~2 dB), as well as mode interference noise.

In this article, an annealing-free high-temperature (1100 ◦C) sensor based on diaphragm-
free HCF FPI is proposed and experimentally demonstrated. A 180-µm-long HCF with an
air core diameter of 4 µm, which is experimentally demonstrated as the best parameter, is
fusion-spliced with a lead-in SMF, forming a high-quality diaphragm-free FPI with fringe
visibility higher than 10 dB. High-temperature cycle tests ranging from 100 to 1100 ◦C
indicate a high response linearity (>0.99) and stability without the need for isothermal
annealing treatments. The proposed sensor is simple in preparation, and the annealing-free
property of the sensor will reduce the cost significantly, making itself a promising candidate
for industrial production and applications.

2. Sensor Fabrication and Working Principle

The proposed fiber-optic FPI sensor, as illustrated in Figure 1, is prepared by fusion
splicing a length of HCF (INNOSEP-TSP07515, CN) with a lead-in SMF (Corning “SMF-
28e”, Wilmington, NC, USA), followed by cutting off the HCF with the assistance of a
homemade microscope to precisely control the remaining length. The microscope of the
cross-section of the HCF is available in our previous work [19]. As shown in Figure 1,
light propagates in the lead-in SMF are partially reflected at the end face of SMF; it is
worth noting that part of the core light was transmitted into the silica cladding of the
HCF, which hardly suffers from Fresnel reflection due to the small refractive index (RI)
difference between the SMF core and the silica cladding of the HCF. To preciously express
the reflected intensity, we defined the ratio γ parameter that characterized the proportion
of light that transmitted into the air core of the HCF, i.e., suffering Fresnel reflection at a
conventional SMF end facet. As such, the reflection intensity can be expressed as

I1 = I0γR1, (1)

where I0 is the intensity of the incident light, γ is the intensity ratio of the light that is
transmitted into the air core of the HCF and R1 is the reflectivity of the SMF end facet,
i.e., “interface I”. A fraction of the light transmitted in the lead-in SMF is coupled into
the silica cladding of the HCF due to the smaller core of HCF than the lead-in SMF. After
transmitting for length L, i.e., the length of HCF in the HCF cladding, light is reflected at
the HCF end facet, i.e., “interface II”, transmitting back and recoupling into the lead-in
SMF. The reflection intensity can be expressed as

I2 = I0(1 − γ)R2, (2)

where R2 is the reflectivity of the HCF end face. For simplify the purpose, the optical
transmission loss in the HCF cladding is neglected, given that the HCF is short. Here, the
intensity ratio of the light that transmitted into the air core of the HCF, i.e., γ, is determined
by the air core diameter of the HCF. To be specific, the mode field of the lead-in SMF is
Gaussian-distributed with a diameter of ~10 µm. A larger air core renders a larger γ, as
shown in Figure 1. As such, the fringe visibility of the FPI, which is determined by the
intensity ratio (I1/I2) of the two reflection beams, can be altered flexibly by optimizing the
inner diameter (ID) of the HCF according to Equations (1) and (2). However, when the ID
of the HCF is larger than the mode field diameter of the SMF, a little fraction of light can
propagate into the silica cladding of the HCF, i.e., γ ≈ 1, resulting in a poor fringe visibility
(~2 dB), as reported in reference [18]. The poor fringe visibility of the FPI spectrum imposes
difficulties for peak tracking and wavelength demodulations. Figure 2 shows the reflection
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spectra of four prepared FPI sensor samples (S1–S4) with HCF IDs of 2 µm (S1 and S2) and
4 µm (S3 and S4), respectively. The HCF with an ID of 4 µm is considered as the best choice
for the preparation of the FPI sensors with higher fringe visibility.
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Figure 1. Schematic illustration of the proposed FPI sensor. FPI: Fabry-Perot interferometer, SMF:
single-mode fiber, I1/I2: intensity ratio, I0: the intensity of the incident light, HCF: hollow-core fiber
L: length of HCF, interface I: the SMF end facet, interface II: the HCF end facet.
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Figure 2. Reflection spectra of the four prepared FPIs with different HCF parameters: (a) inner
diameter (ID): 2 µm and L: 606 µm, (b) ID: 2 µm, and L: 165 µm, (c) ID: 4 µm and L: 414 µm and (d)
ID: 4 µm and L: 178 µm.

In addition to the ID, the length L of the HCF is another important parameter that
affects the spectra quality of the FPI. To be specific, multiple modes will be excited when
the HCF is long enough, resulting in a superimposed interference spectrum. As can be
clearly seen in Figure 2c, where the length L of the HCF is ~414 µm, the interference
spectrum is characterized by dense fringes modulated by a large envelope, implying a
multibeam interference. Figure 3a shows the “spectrum of spectrum” result by applying
Fast Fourier-Transform (FFT) to the interference spectrum shown in Figure 2c; the multiple
frequency components can be clearly identified from Figure 3a. As such, a proper HCF
length is vital for the spectrum quality. By shorting the HCF (~178 µm), a typical two-beam
interference spectrum can be obtained, as shown in Figure 2d, and the FFT result, which
is shown in Figure 3b. Similar results can be found in Figure 2a,b, where the ID of the
employed HCF is 2 µm.
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3. High-Temperature Properties of the Proposed Sensor

After the parameters (ID and L of HCF) optimization, a high-quality FPI sensor was
prepared, and the reflection spectrum is shown in Figure 4, where the fringe visibility is
~11 dB at ~1550 nm. The length of the HCF, i.e., cavity length L of the FPI, is ~180 µm. The
high-temperature sensing characteristics of the fiber-tip HCF FPI was then experimentally
studied by placing the sensor into a high-temperature furnace (CarboliteGero, GHA 12/750,
Hope, UK) that can reach 1200 ◦C with an accuracy of ±1 ◦C. It is worth noting that
the temperature sensitivity is also wavelength-dependent; this relationship was detailed
in our previous work [19]. For simplicity and clarifying purposes, a wavelength of the
interference dip near 1550 nm was employed as the temperature indicator. The temperature
was stepwise raised and then cooled passively. Each temperature point was held for
~10 min to ensure a stable temperature distribution in the oven before recording. The
wavelength of the tracked dip in the interference spectrum presented a “red shift”, with the
temperature increasing from 100 to 300 ◦C. The observed “red shift” can be attributed to a
combined impact of the thermo-optic and thermal expansion effects of the silica, where the
thermal expansion contributes little compared to the thermo-optic effect. The temperature
sensitivity can be expressed as

dλ

dT
= λ[

1

ne f f
si (T)

dne f f
si (T)
dT

+ α] (3)

where dne f f
si (T)/dT and α are the thermo-optic and thermal expansion coefficients of silica,

respectively. The ne f f
si (T) increases with the temperature; as such, the contribution of the

thermo-expansion effect cannot be neglected at high temperature conditions, according
to Equation (3). A detailed analysis was presented in our previous work [19]. During
the cooling process, no thermal hysteresis and wavelength separation from the heating
process were observed, as shown in Figure 5a. To explore the high-temperature response
properties of the sensor, the maximum oven temperature was increased from 400 to 800 ◦C
in steps of 100 ◦C, the results of which are clearly shown in Figure 5b–f, where the thermal
hysteresis or wavelength separation between heating and cooling were not observed and
the measurement linearity at each temperature range were all higher than 0.99. A little
wavelength separation of ~0.2 nm was observed between the heating and cooling processes
when the temperature increased to 900 ◦C, as depicted in Figure 5g. We believe that the
small wavelength separation may be attributed to stress releasing, where the stress was
introduced by a little squeezing of the HCF and led-in SMF during the arc discharge thermal
fusion. Despite the small wavelength separation (~0.2 nm), the measurement linearity was
still higher than 0.99. A repeated high-temperature test from 100 to 900 ◦C was performed;
after which, the wavelength separation was eliminated, and an improved linearity of
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0.997 was convinced, as shown in Figure 5h. Furthermore, temperature experiments in a
temperature range of 100–1000 ◦C and 100–1100 ◦C were performed, respectively, where
no thermal hysteresis and high linearity (>0.99) were demonstrated experimentally. The
results are shown in Figure 5i,j, respectively.
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Figure 5. Wavelength of the tracked dip versus temperature for ten temperature ranges of (a) 100–300 ◦C, (b) 100–400 ◦C,
(c) 100–500 ◦C, (d) 100–600 ◦C, (e) 100–700 ◦C, (f) 100–800 ◦C, (g) 1st 100–900 ◦C (h) 2nd 100–900 ◦C, (i) 100–1000 ◦C, and
(j) 100–1100 ◦C.
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During the whole high-temperature measurements, the tracked dip exhibited a linear
“red shift” with the temperature increasing, indicating a linear RI increase of the HCF
cladding. The cooling curve coincided well with the heating curve, and no thermal
hysteresis was observed within a temperature range from 100 to 1100 ◦C. The observed
high-temperature response of the proposed FPI sensor agreed well with our hypothesis
that the employment of pure-silica HCF as the high-temperature sensing element could
dismiss the complicated isothermal annealing processes. The temperature sensitivity
at each temperature test range was 12.5, 13.0, 13.7, 14.0, 14.4, 14.8, 15.1, 14.8, 15.1 and
15.2 pm/◦C, respectively. The achievable minima temperature change was determined by
the wavelength resolution of the OSA (OSA; optical spectrum analyzer) or interrogator. In
our experiments, the employed OSA had a wavelength resolution of 0.02 nm. Considering
a temperature sensitivity of 15 pm/◦C, the achievable measured minima temperature
change was ~1.3 ◦C.

4. Conclusions

A high-linearity (>0.99) annealing-free fiber-optic high-temperature (1100 ◦C) sensor
was experimentally demonstrated. The proposed sensor was diaphragm-free and simply
prepared by fusion splicing. The impact of the HCF length L and ID on the interference
spectrum qualities were experimentally studied. Benefitting from pure-silica HCF, a high
measurement linearity (>0.99) of the sensor was demonstrated in a temperature ranging
from 100 to 1100 ◦C. The proposed sensor dismissed the complicated isothermal annealing
process effectively. Such a fiber-optic high-temperature sensor can reduce the cost of sensor
preparation significantly and may find vital applications in the industry, such as aero
engines and melting furnaces.

Author Contributions: Z.Z. and J.H. proposed the idea, Z.Z. and B.X. performed the experiments
and prepared the manuscript, M.Z. and W.B. checked and revised the manuscript, X.X. and Y.W.
(Ying Wang) helped with the high-temperature tests and analysis and Y.W. (Yiping Wang) supervised
this research project. All authors have read and agreed to the published version of the manuscript.
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