王义平 教授

王义平 深圳大学光电工程学院、国家杰青、特聘教授、博导、珠江学者,深圳物联网光子器件与传感系统重点实验室主任,1971年出生于重庆。1995年西安工业学院精密仪器学士学位;2000年重庆大学精密仪器及机械硕士学位;2003年重庆大学光学工程博士学位,然后到上海交通大学和香港理工大学做博士后;2007年德国耶拿光子技术研究院(IPHT),洪堡学者(Humboldt Fellow);2009年英国南安普顿大学欧盟居里学者(Marie Curie Fellow)。2012年受聘深圳大学特聘教授,组建光纤传感技术研究团队和实验室。

研究方向:光纤传感技术、光纤光栅、微纳光子器件、飞秒激光微加工、光子晶体光纤等。近10年系统研究了不同类型光纤光栅的原理、制作及应用,报道了CO2 激光写入的空气芯光子带隙光纤光栅,被J.of Appl. Phys.选为封面图片。获全国优秀博士学位论文奖、欧盟玛丽居里国际引进人才基金奖、德国洪堡研究基金奖等10项奖励。主持国家杰出青年科学基金等17项课题。授权中国和美国专利11项,合著专著1部。论文183篇(SCI收录110篇,SCI引用1428次,H-index指数: 21),1篇特邀综述论文被J.of Appl. Phys.选为封面文章,2篇论文被Photonics Spectra作为专题报道。主办国际学术会议分会1次、大会报告1次、特邀报告20次。IEEE和美国光学学会高级会员、中国纤维光学与集成光学专业委员会委员。

地址:深圳大学光电工程学院328室
电话:13510186456
座机:0755-26066281
E-mail: ypwang@szu.edu.cn

1. 教育经历

  • 2000,09-2003,06 重庆大学,光学工程专业,工学博士 (全国优秀博士学位论文)

  • 1998,09-2000,06 重庆大学,精密仪器及机械专业,工学硕士

  • 1991,09-1995,07 西安工业学院 (现西安工业大学),精密仪器专业,工学学士

2. 工作经历

  • 2012,01- 今 深圳大学光电工程学院、国家杰青、特聘教授、博导、珠江学者、深圳市地方级领军人才、孔雀计划海外高层次人才,组建了光纤传感技术研究团队和“深圳物联网光子器件与传感系统重点实验室”

  • 2009,09-2011,12 英国南安普顿大学、光电研究中心(University of Southampton,Optoelectronics Research Centre),欧盟居里学者(Marie Curie Fellow),获欧盟玛丽•居里国际引进人才基金(Marie Curie International Incoming Fellowships)。

  • 2007,07-2009,08 德国耶拿光子技术研究院(Institute of Photonic Technology:IPHT),洪堡学者(Humboldt Fellow)、获德国洪堡研究基金(Humboldt Research Fellowships)。

  • 2005,07-2007,06 香港理工大学、电机工程系,博士后(Postdoctoral Fellow)和研究员(Research Fellow)。

  • 2003,07-2005,06 上海交通大学、电子工程系,博士后。

  • 1995,07-1998,08 重庆华光仪器厂、计量处,技术员。

3. 主持科研项目及人才基金

已主持国家自然科学基金(4项)、欧盟玛丽局里国际引进人才基金、德国洪堡研究基金等科研项目17项。

编号 项目类别 项目名称/编号 起止时间 状态 职责
1 国家杰出青年科学基金 光纤传感技术 2015-2018 在研 主持
2 国家自然科学基金面上项目 空气芯光子带隙光纤光栅 (61377090) 2014-2017 在研 主持
3 广东省珠江学者专项支持项目 光子晶体光纤光栅制作及传感通信应用(829-000001) 2014-2016 在研 主持
4 深圳市重点实验室组建项目 深圳物联网光子器件与传感系统重点实验室(ZDSYS20140430164957664) 2014-2016 在研 主持
5 南山区重点实验室组建项目 南山区物联网光子传感器件与系统重点实验室(KC2014ZDZJ0008A) 2014-2015 在研 主持
6 深圳市海外高层次人才创新创业专项资金项目 液体填充的光子晶体光纤及传感和通信应用(KQCX20120815161444632) 2013-2015 在研 主持
7 深圳市战略新兴产业发展专项资金项目 空气芯光子带隙光纤光栅的写入技术及应用(JCYJ20130329140017262) 2013-2015 在研 主持
8 深圳市引进高端人才科研启动基金 光子带隙光纤光栅的制备和应用 (827-000005) 2013-2015 在研 主持
9 国家自然科学基金面上项目 光子晶体光纤导光机理可逆转换及应用 (11174064) 2012-2015 在研 主持
10 深圳大学特聘教授实验室建设基金 基于光子晶体光纤和微纳光纤的新一代传感技术研究 (810-000001) 2012-2014 在研 主持
11 全国优秀博士学位论文作者专项基金 基于空气芯光子带隙光纤的光纤光栅及传感和通信应用(200940) 2009-2011 结题 主持
12 欧盟玛丽居里国际引进人才基金(Marie Curie International Incoming Fellowships) Gratings in air-core photonic bandgapfibres for applications within communications, lasers and sensors (PIIF-GA-2009-235487) 2007-2008 结题 主持
13 德国洪堡研究基金 (Humboldt Research Fellowships) Fiber Bragg gratings in small core and microstructured optical fibers for sensing applications (1126655) 2007-2008 结题 主持
14 香港研资局基金(GRF) Novel sensors and devices based on long period gratings in photonic crystal fibers (PolyU 5182/07E,主持人:Wei Jin, Yiping Wang) 2008-2010 结题 共同主持
15 国家自然科学基金面上项目 偏振无关的快速可调谐电光聚合物波导光栅研究(60507013) 2006-2008 结题 主持
16 香港理工大学博士后研究基金 Tunable multi-wavelength fiber laser operated in L-band (G-YX51) 2005-2007 结题 主持

4. 获 奖

  1. 2014年获国家杰出青年科学基金,获奖项目“光纤传感技术”。

  2. 2014年入选深圳市地方级领军人才。

  3. 2013年获四川省科技进步奖,一等奖,获奖项目:光纤波导微结构的传感机理和方法研究,第四获奖人。

  4. 2012年入选广东省“珠江学者”特聘教授。

  5. 2012年入选深圳市“孔雀计划”海外高层次 B 类人次。

  6. 2009年获欧盟“玛丽•居里国际引进人才基金奖”(Marie Curie International Incoming Fellowships (IIF)),资助获奖人在英国南安普顿大学国光电研究中心从事科学研究,居里学者(Marie Curie Fellow)。

  7. 2008年获教育部自然科学奖一等奖,获奖项目:光纤传感技术若干基础关键问题的研究,第四获奖人。

  8. 2007年获德国“洪堡研究基金奖”(Humboldt Research Fellowships),资助获奖人在德国耶拿光子技术研究院(Institute of Photonic Technology:IPHT)从事科学研究,洪堡学者。

  9. 2006年获 第四获奖人全国优秀博士学位论文奖,获奖论文:新型长周期光纤光栅特性研究。

  10. 2004年获重庆市科学技术奖——技术发明奖,二等奖,获奖项目:新型长周期光纤光栅器件制作与应用,第四获奖人。

5. 授权专利

授权专利11项,申请公布(实审)发明专利7项。

  1. 王义平,陈建平,饶云江,上海交通大学
    弯曲曲率和弯曲方向的同时测量方法
    中国发明专利,专利号:ZL200510024425.7,授权日:2006.12.13

  2. 王义平,陈建平,饶云江,上海交通大学
    同时测量弯曲曲率和弯曲方向的弯曲传感器
    中国发明专利,专利号:ZL 200510024426.1,授权日:2007.01.24

  3. 王义平,陈建平,李新碗,上海交通大学
    同时测量平面波导多个光学参数的方法
    中国发明专利,专利号:ZL 200410084314.0,授权日:2007.05.09

  4. 王义平,陈建平,李新碗,上海交通大学
    用精密反射仪同时测量聚合物薄膜折射率和厚度的方法
    中国发明专利,专利号:ZL200410084315.5,授权日:2007.06.06

  5. D. Wang,Y. Wang,W. Jin,Hong Kong Polytechnic University
    Method of manufacturing CO2 laser grooved long period fiber gratings
    美国发明专利,专利号:US 7,664,351 B2,授权日:2010.02.16

  6. 王义平,周江涛,廖常锐,深圳大学
    强度调制型光纤迈克尔逊应变传感器及传感器装置
    中国实用新型专利,专利号:201420082778.7,授权日:2014.06.25

  7. 王义平,刘颖洁,廖常锐,深圳大学
    一种光子晶体光纤紧凑型可调谐的带通滤波器
    中国实用新型专利,专利号:201420153147.X,授权日:2014.06.26

  8. 王义平,廖常锐,深圳大学
    可调FP腔的FP干涉仪的制作装置
    中国实用新型专利,专利号:201420153237.9,授权日:2014.07.04

  9. 王义平,李正勇,廖常锐,深圳大学
    基于迈克尔逊干涉仪的全光纤折射率计及其系统
    中国实用新型专利,专利号:201420189564.X,授权日:2014.07.09

  10. 王义平,钟晓勇,廖常锐,深圳大学
    基于光子晶体光纤的膨胀型长周期光纤光栅
    中国实用新型专利,专利号:201420209917.8,授权日:2014.08.07

  11. 王义平,廖常锐,刘申,深圳大学
    基于光纤FP干涉仪的压力传感器
    中国实用新型专利,专利号:201420209878.1,授权日:2014.10.15

  12. 王义平,周江涛,廖常锐,深圳大学
    强度调制型光纤迈克尔逊应变传感器及制作方法
    中国发明专利,申请号:201410065837.4,申请日:2014.02.26

  13. 王义平,刘颖洁,廖常锐,深圳大学
    光子晶体光纤紧凑型可调谐的带通滤波器及其制作方法
    中国发明专利,申请号:201410126998.X,申请日:2014.02.26

  14. 王义平,刘申,廖常锐,深圳大学
    可调FP腔的FP干涉仪的制作方法及制作装置
    中国发明专利,申请号:201410127074.1,申请日:2014.03.31

  15. 王义平,李正勇,廖常锐,深圳大学
    基于迈克尔逊干涉仪的全光纤折射率计、制作方法及系统
    中国发明专利,申请号:201410156179.X,申请日:2014.04.18

  16. 王义平,钟晓勇,廖常锐,深圳大学
    基于光子晶体光纤的膨胀型长周期光纤光栅及其制作方法
    中国发明专利,申请号:201410173103.8,申请日:2014.04.25

  17. 王义平,廖常锐,刘申,深圳大学
    基于光纤FP干涉仪的压力传感器及其制作方法
    中国发明专利,申请号:201410173102.3,申请日:2014.04.25

  18. 王义平,周江涛,廖常锐,深圳大学
    v 强度调制型光纤迈克尔逊应变传感器及制作方法
    中国发明专利,申请号:201410065837.4,申请日:2014.02.26

6. 学术兼职

  • IEEE高级会员 (Senior Member of IEEE);

  • 美国光学学会高级会员 (Senior Member of OSA);

  • 中国光学学会高级会员;

  • 中国光学学会纤维光学与集成光学专业委员会委员;

  • 欧盟玛丽居里学者协会会员

  • 德国洪堡基金会会员

7. 学术会议特邀报告

已主办国际会议分会1次,学术会议大会报告和特邀报告21次,分会主席(Session Chair)和会议TPC 10次,近5年部分学术会议如下:

  1. 王义平、主办国际会议“Progress in Electromagnetics Research Symposium (PIERS)”的Optical Fiber Sensing Devices分会,Aug. 2014, Guangdong, China.(上一届在Stockholm举行的PIERS参会人员1135人)

  2. 王义平,光纤微加工制备微纳光子器件及应用,广东省光学学会2013年学术交流大会,2013年12月13~ 15日,中山市。( 大会报告

  3. Y. Wang, Microstructuredoptical fiber devices and sensing applications, China International Optoelectronic Expo (CIOE 2014), Sep.2013, Shenzhen, China ( 特邀报告 )

  4. Y. Wang, et al., Selective-fluid-filled photonic crystal fibres and applications,Proc. of SPIE Vol. 8914, UNSP 89140J, 2013, 5th International Symposium on Photoelectronic Detection and Imaging Technology andApplications (ISPDI 2013), June 2013, Beijing, China.( 特邀报告 )

  5. Y. Wang, et al.,Optical attenuators based on fluid-filled microstructured optical fibers, 2013 Optical Fiber Sensor Conference in China, May 2013, Hefei, China. ( 特邀报告 )

  6. Y. Wang, Optical fiber gratings written in Microstructured optical fibers, Photonics Global Conference 2012 (PGC2012), 13-16 Dec. 2012, Singapore ( 特邀报告 )

  7. Y. Wang, In-Fiber gratings written in photonic crystal fibers, International Conference on Optical Fiber Sensing Technology and Its Application on Smart Grid, 13-15 Oct. 2012, Nanjing, China. ( 特邀报告、分会主席 )

  8. Y. Wang, et al.,UV-laser-inscribed fiber Bragg gratings in photonic crystal fibers and sensing applications, The 2011 International Conference on Optical Instrument and Technology: Optoelectronic Measurement Technology and System (OIT11-5), Prof. of SPIE 8201-73, Beijing, China. ( 特邀报告、分会主席、会议TPC )

  9. Y. Wang, et al., Fabrications of Fiber Bragg gratings written in photonic crystal fibers, The 2011 Optical Fiber Sensors Conference, Harbin, China. ( 特邀报告,会议TPC共主席

  10. Y. Wang, Fabrication and application of CO2-laser-induced LPFGs, 5th Forum on Research and Development of Optical Fiber Sensors, Jun. 2010, Guangzhou, China. ( 特邀报告、分会主席 )

8. 创新研究成果

(1)光纤光栅系统性研究

近10余年系统研究了不同类型光纤光栅的制备、特性及应用。 2010年被著名期刊J. of Appl. Phys.特邀撰写光纤光栅综述论文“Review of long period fiber gratings written by CO2 laser”,该论文被选为期刊封面文章(下图),并在AIP网站高亮 (Y. Wang, J. Appl. Phys., 108, 081101, 2010)。 发表SCI论文87篇,SCI他引1021次,H-index:20,这表明研究成果获得国际同行肯定,在光纤光栅领域有较高知名度。合著《光纤光栅原理及应用》,第二作者,科学出版社,2006年, 共11章50万字,王义平撰写第1、8、9、10、11章(右图)。在德国耶拿光子技术研究院(IPHT)做洪堡学者期间和同事共同完成的双光束干涉在线写入光纤光栅技术(Draw Tower Gratings)已和比利时FBGS公司合作实现了产业化,并进行了光纤光栅批量性生产,其产品已在全球范围推广和销售(例如在2012年北京第22届国际光纤传感大会上设立展台),促进了光纤光栅的推广和实际工程应用。

(2)第一支空气芯光子带隙光纤光栅(单篇SCI引用58次,申请美国专利)

空气芯光子带隙光纤(PBF)中95%以上的能量在空气芯中传输,因此基于空气芯PBF的光纤光栅在传感和通信领域具有广泛应用前景。但是从1996年空气芯PBF诞生以来一直没有在这种光纤中成功写入光栅的报道,这因为直接在PBF的空气芯中引入光栅所需的折射率调制非常困难甚至是不可能的。申请人2008年用CO2激光周期性塌陷空气孔的办法首次在空气芯PBF中成功写入长周期光纤光栅(右图),并发现该新型光栅有独特的光学特性:(a)对弯曲不敏感;(b) 外界折射率变化不敏感;(c) 温度灵敏度低两个数量级;(d)窄的3dB带宽(Y. Wang, et al., Opt. Express 16, 2784,2008),该成果被J. Appl. Phys.2010年108(8)期选为封面图片。三年后意大利学者A. Cusano才在这种PBF中写入出光纤光栅。

A. Cusano (Optics & Laser Technology总编辑)评价 :“近十年人们一直试图在空气芯光子带隙光纤中写入光栅,但是目前为止制备如此的光栅却是非常困难的,这是因为该光纤95%的光能量在空气芯中传输以致于紫外激光不可能在该光纤中诱导起折射率调制。…王义平等2008年利用CO2激光解决了这个难题”。(Despite fabrication progresses carried out in the last decade, so far, LPGs in HC fibers cannot be easily fabricated. The main issue relies on the difficulty in introducing UV-induced refractive index modulation since up to 95% of the light energy is confined within the air-core. … In 2008, Wang et al. proposed the use of high frequency CO2 laser pulses capable to overcome this drawback. IEEE Photon. Technol. Lett. 23(21), 1567, 2011)

(3)CO2激光二维扫描制备光纤光栅技术(单篇SCI引用154次,2项专利授权)

常规CO2激光点对点写入光纤光栅的方法要求每一个周期激光焦点都要对准纤芯,因此对实验装置精度要求高,光栅制备效率低。王义平2003年发明了CO2激光二维扫描制备光纤光栅的技术——用低成本工业化打标机就可以制备高质量长周期光纤光栅(Y. Rao, Y. Wang, et al. IEEE J. Lightwave Technol. 21, 1320, 2003);首次发现该新型光纤光栅的弯曲、扭曲和横向负载特性具有独特的方向相关性,并利用此特性研制了多种弯曲、扭曲和应变传感器。以此为主要内容的博士论文《新型长周期光纤光栅特新研究》被评为全国优秀博士学位论文(右图)。

俄罗斯科学院院士及其主席团成员Y. V. Gulyaev评价:“发现了光纤扭曲引起的谱漂移现象”(A shift is also observed in the case of twisting.Physics - Uspekhi, 49, 167, 2006)。

Y. Lu (SPIE Fellow)评价:首次采用逐点CO2激光脉冲在光纤中制作了长周期光栅(The LPG was first fabricated in the fiber by point-by-point CO2 laser pulse irradiation method, Opt. Lett. 35, 399, 2010)。

T. K. Gaylord (IEEE/OSA Fellow)评价:实现了判定方向的弯曲传感(…enablesdirectional bend sensing. Appl. Opt., 51, 6179, 2012)。

(4)非对称长周期光纤光栅制作方法(单篇SCI引用130次,美国专利授权)

常规光纤光栅的应变灵敏度较低,并且有温度和应变交叉敏感问题。王义平发明了CO2激光在光纤表面上周期性刻槽制备非对称长周期光纤光栅的方法,该方法可以在几乎所有类型的光纤上写入高质量光纤光栅(右图),并且把光栅应变灵敏度提高了两个数量级(up to -102.89 pm/με),易于制备超强耦合效率的光纤光栅(up to -47.39dB),这得益于该光栅独特的非对称刻槽结构(Y. Wang, et al., Appl. Phys. Lett. 85, 151105, 2006)。

S. He (IEEE/OSA/SPIEFellow) 评价:“王义平等用CO2激光刻槽的方法制备了非常强耦合的长周期光纤光栅”(Wang et al. demonstrated very strong resonant LPG that was written by a focused CO2 laser to carve periodic grooves on the cladding surface of a fiber. Appl. Opt. 47(10), 1549, 2008)。

S. Chi (OSA Fellow)评价:“这种非对称光栅能被用于制作高灵敏度的温度、浓度、生物传感器”(This asymmetric grating structure can be employed to act as high-tuning-efficiency LPFGs and highly sensitive sensors, such as temperature, concentration, or biophotonicsensors.Opt. Lett. 32, 2082, 2007)。

H. Chan等评价:“最高效的CO2激光写入长周期光纤光栅方法”(… the most efficient CO2 laser written LPG reported previously.IEEE Photon. Technol. Lett. 20(8), 611, 2008)

(5)高灵敏度应变传感器(单篇SCI引用60次)

利用该方法发明了基于光子晶体光纤光栅的高灵敏度应变传感器,该传感器具有极低的温度灵敏度,在无任何补偿措施的情况下把温度和应变的交叉敏感降低到0.5 εμ/℃(Y. Wang, et al., Opt. Lett. 31, 3414, 2006)。该工作被著名期刊Photonics Spectra作为技术新闻(Technology News)“Wrinkles Improve Fiber Optic Strain Sensor”报道。

B. Hitz (Photonics Spectra编辑)评价:香港理工大学的研究人员(注:王义平)发明了一种具有高应变灵敏度和低温度敏感性的光纤传感器,他们成功的秘诀是光纤上的周期性皱折(Researchers at Hong Kong Polytechnic University demonstrated a fiber optic sensor that is far more sensitive to strain than conventional sensors, but no more sensitive to temperature. Wrinkles are the secret of its success. Photonics Spectra, 27-30, Jan 2007)。

(6)基于光子晶体光纤光栅的起偏器(单篇SCI引用26次)

利用该方法发明了基于光子晶体光纤光栅的光纤型起偏器,该起偏器有非常低的温度灵敏度,从而克服了普通光纤起偏器的温度漂移问题(Y. Wang, et al., Opt. Lett. 32, 1035, 2007)。该成果被著名期刊Photonics Spectra作为热点研究 (Research) “Fiber Polarizer for Telecom Application”报道。

B. Hitz (Photonics Spectra编辑)评价:“香港理工大学…的科学家(注:王义平等)发明了利用光子晶体光纤光栅制作超低温度敏感性的光纤起偏器的方法”(scientists at Hong Kong Polytechnic University … have demonstrated how a fiber polarizer with minimal temperature dependence can be created by fabricating a long-period grating in a photonic crystal fiber. Photonics Spectra, 110-111, Jun. 2007)

(7)实用的光子晶体光纤熔接技术(单篇SCI引用37次)

熔接光子晶体光纤通常必须调节熔接机的放电参数,这制约了光子晶体光纤的应用。申请人发明了实用化的光子晶体光纤熔接技术(右图),该技术直接用普通熔接机缺省的放电参数熔接光子晶体光纤,克服了其他熔接技术需要调节放电参数的不足,并且熔接损耗可降低到约1dB。从而解决了光子晶体光纤的熔接问题(Y. Wang, et al., Opt. Express 16, 7258, 2008)。

A. Birks (OSA Fellow)等评价:“据我们所知,这是有关高非线性光子晶体光纤低损耗熔接技术的唯一报道,其关键技术在于空气孔完全坍陷后光仍然可以在掺锗纤芯中传输,并且任何情况下都只有约1.0dB的熔接损耗”(To our knowledge, the only reported low-loss HNL PCF splices rely on special Ge-doped cores that still guide if the holes have collapsed, and they are quite lossy(~1.0 dB)anyway.Opt. Lett. 34, 2240, 2009)

9. 学术论著

发表论文183篇(SCI收录110篇,SCI引用1428次,H-index指数: 21),1篇特邀综述论文被J. of Appl. Phys.选为封面文章,2篇论文被Photonics Spectra作为专题报道,合著专著1部。近5年SCI引用都超过150次/年。主办国际学术会议分会1次、大会报告1次、特邀报告20次。

代表性论著

[1]. Y. Wang, Review of long period fiber gratings written by CO2 laser, J. Appl. Phys., 108, 081101, 2010. (特邀综述论文,被选为期刊封面文章), 影响因子: 2.210, SCI引用次数: 31

[2]. Y. Wang, D. N. Wang, W. Jin, Y. Rao, G. Peng, Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber, Appl. Phys. Lett. 89, 151105, 2006., 影响因子: 3.794, SCI引用次数: 130

[3]. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity, Opt. Lett., 31, 3414-3416, 2006. (被Photonics Spectra选为技术新闻”Wrinkles Improve Fiber Optic Strain Sensor“报道), 影响因子: 3.385, SCI引用次数: 60

[4]. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao and D. Wang, Long period gratings in air-core photonic bandgap fibers, Opt. Express, 16, 2784-2790, 2008. (该成果被J. Appl. Phys. 2010年108(8)期选为封面图片), 影响因子: 3.546, SCI引用次数: 58

[5]. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters, Opt. Express 16, 7258-7263, 2008., 影响因子: 3.546, SCI引用次数: 37

[6]. Y. Wang, Y. Rao, A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously, IEEE Sensors Journal, 5, 839-843, 2005, 影响因子: 1.475, SCI引用次数: 33

[7]. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, In-fiber polarizer based on long period fiber grating written on photonic crystal fiber, Opt. Lett. 32, 1035-1037, 2007. (被Photonics Spectra选为研究热点”Fiber Polarizer for Telecom Application“报道), 影响因子: 3.385, SCI引用次数: 26

[8]. Y. Wang, W. Jin, L. Jin, X. Tan, et al. Optical switch based on a fluid-filled photonic crystal fiber Bragg grating, Opt. Lett.34, 3683-3685, 2009., 影响因子: 3.385, SCI引用次数: 22

[9]. Y. Wang and Y. Rao, Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously, Electron. Lett. 40, 164-166, 2004., 影响因子: 1.038, SCI引用次数: 26

[10]. Y. Wang, Y. Rao, Z. Ran, T. Zhu and X. Zeng, Bend-insensitive long-period fiber grating sensors, Opt. and Lasers in Engineering 41, 233-239, 2004., 影响因子: 1.916, SCI引用次数: 26

其他期刊论文:

2014年

[11] Zhengyong Li, Yiping Wang, Changrui Liao, Shen Liu, Jiangtao Zhou, XiaoyongZhong, Yingjie Liu, Kaiming Yang, Qiao Wang, and Guolu Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sensors and Actuators B-Chemical, 199,31-35, 2014 (JCR一区,IF=3.840)

[12] Shen Liu, Yiping Wang, Changrui Liao, Zhengyong Li, Qiao Wang, Jiangtao Zhou, Kaiming Yang, XiaoyongZhong, Jing Zhao, and Jian Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer,” Optics Letters, 39(7), 2121-2124, 2014(JCR二区,IF=3.179)

[13] Yingjie Liu, Yiping Wang, Bing Sun, Changrui Liao, Jun Song, Kaiming Yang, Guanjun Wang, Qiao Wang, Guolu Ying, and Jiangtao Zhou, “Compact tunable multibandpass filters based on liquid-filled photonic crystal fibers,” Optics Letters, 39(7), 2148-2151, 2014(JCR二区,IF=3.179)

[14] XiaoyongZhong, Yiping Wang,Junle Qu*, Changrui Liao, Shen Liu, Jian Tang, Qiao Wang, Jing Zhao, Kaiming Yang, Zhengyong Li, “High-sensitivity strain sensor based on inflated long period fiber grating”, Optics Letters, 39(18), 5463-5466,2014(JCR二区,IF=3.179)

[15] Changrui Liao, Shen Liu, Lei Xu, Chao Wang, Yiping Wang, Zhengyong Li, Qiao Wang, and D. N. Wang, “Sub-micron silica diaphragm based fiber-tip Fabry-Perot interferometer for pressure measurement,” Optics Letters, 39(10), 2827-2830, 2014(JCR二区,IF=3.179)

[16] Zhengyong Li, Changrui Liao, Yiping Wang, Xiaopeng Dong, Shen Liu, Kaiming Yang, Qiao Wang, and Jiangtao Zhou “Ultrasensitive refractive index sensor based on a Mach–Zehnder interferometer created in twin-core fiber,” Optics Letters, 39(17), 4982-4985, 2014(JCR二区,IF=3.179)

[17] Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, XiaoyongZhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Optics Express, 22(2), 1680-1686, 2014. (JCR二区,IF=3.528)

[18] XiaoyongZhong,Yiping Wang, Changrui Liao, Guolu Yin, Jiangtao Zhou, GuanjunWang, Bing Sun and Jian Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique”, IEEE Photonics Journal, 6(4), 2201508, 2014(JCR二区,IF=2.330)

[19] Jiangtao Zhou, Yiping Wang, Changrui Liao, Guolu Yin, Xi Xu, Kaiming Yang, XiaoyongZhong, Qiao Wang, and Zhengyong Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach–Zehnder Interferometer,” IEEE Photonic Technology Letter, 26(5), 508-511, 2014. (JCR二区,IF=2.176)

[20] Guolu Yin, Yiping Wang Changrui Liao, Jiangtao Zhou, XiaoyongZhong, Guanjun Wang, Bing Sun, and Jun He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonic Technology Letters, 26(7), 698-701, 2014 (JCR二区,IF=2.176)

[21] Bing Sun,Yiping Wang, Yingjie Liu, Shen Liu, Changrui Liao, and Ming-Yang Chen, “Compact device employed a hybrid plasmonic waveguide for polarization-selective splitting,” Optics Communications, 334, 240-246, 2015(JCR三区,IF=1.438)

[22] Chao Wang, WaJin, Changrui Liao, Jun Ma, Wei Jin, Fan Yang, Hoi Lut Ho, and Yiping Wang “Highly birefringent suspended-core photonic microcells for refractive-index sensing,”Applied Physics Letters, 105(6), 061105-1-4, 2014(JCR二区,IF=3.515)

[23] Tao Chen, Changrui Liao, D. N. Wang, Yiping Wang, “Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber,” J. of Optical Society of America B 31(6), 1377-1382, 2014(JCR三区,IF=1.806)

[24] Tao Chen, Liao Changrui, D. N. Wang, Yiping Wang, “Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber,” Applied Optics 53(13), 2828-2832, 2014(JCR三区,IF=1.689)

2013年

[25] Changrui Liao, Lei Xu, Chao Wang, D. N. Wang, Yiping Wang, Qiao Wang, Kaiming Yang, Zhengyong Li, XiaoyongZhong, Jiangtao Zhou, and Yingjie Liu, “Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble,” Optics. Letters, 38(21), 4473-4476, 2013.(JCR二区,IF=3.179)

[26] Changrui Liao, Lei Xu, Chao Wang, D. N. Wang, Yiping Wang, Qiao Wang, Kaiming Yang, Zhengyong Li, Xiaoyong Zhong, Jiangtao Zhou, and Yingjie Liu, Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble, Optics. Letters, 38(21), 4473-4476, 2013.

[27] *Yiping Wang**, Changrui Liao, XiaoyongZhong, Jiangtao Zhou, Yingjie Liu, Zhengyong Li, Guanjun Wang; Kaiming Yang , Long period fiber gratings written in photonic crystal fibers by use of CO2 laser, Photonic Sensors, 3(3), 193-201, 2013

[28] Yiping Wang, Changrui Liao, Jiangtao Zhou, Yinjie Liu, Zhengyong Li, XiaoyongZhong, Fabrications and applications of fiber gratings based on microstructured optical fibers, J. Shenzhen Uninversity Science and Engineering, 30, 23-29, 2013

2012年及以前

[29] Yiping Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, and M. Rothhardt, “Fabrications of Fiber Bragg Gratings Written in Photonic Crystal Fibers,” Sensor Letters. 10(7), 1382-1386, 2012. (JCR四区,IF=0.517)

[30] Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, Intensity-measurement bend sensors based on periodically-tapered soft glass fibers, Opt. Lett. 36, 558-560, 2011

[31] L. Jin, W. Jin, J. Ju, and Y. Wang, Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers, J. of Lightwave Technol. 29,1708-1714, 2011

[32] Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications, Opt. Lett. 35, 88-99, 2010.

[33] Y. Wang, X. Tan, W. Jin., S. Liu, D. Ying, and Y. L. Hoo, Improved bending property of half-filled photonic crystal fiber, Opt. Express 18, 12197-12202, 2010.

[34] Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, Thermo-optic switching effect based on fluid-filled photonic crystal fiber, IEEE Photon. Technol. Lett.22, 164-166, 2010.

[35] Y. Wang, S. Liu, X. Tan, and W. Jin, Selective-fluid-filling technique of microstructured optical fibers, IEEE J. Lightwave Technol. 28, 3193-3196, 2010.

[36] S. Liu, L. Jin, W. Jin, Y. Wang, and D. N. Wang, Fabrication of long-period gratings by femtosecond laser-induced filling of air-holes in photonic crystal fibers, IEEE Photon. Technol. 22, 1635-1637, 2010.

[37] L. Jin, W. Jin, J. Ju, and Y. Wang, Coupled local-mode theory for strongly modulated long period gratings, IEEE J. Lightwave Technology 28, 1745-1751 (2010).

[38] Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, Optical switch based on a fluid-filled photonic crystal fiber Bragg grating, Opt. Lett.34, 3683-3685 (2009).

[39] Y. Wang, H. Bartelt, W. Ecke, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, I. Latka, and S. Brueckner, Investigating transverse loading characteristics of microstructured fiber Bragg gratings with an active fiber depolarizer, IEEE Photon. Technol. Lett.21, 1450-1452 (2009).

[40] Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, and M. Rothhardt, Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers, Appl. Opt.47, 1963-1968 (2009).

[41] Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers, Opt. Communications282, 1129-1134 (2009).

[42] Y. Wang, W. Jin, and D. N. Wang, Unique temperature sensing characteristics of CO2-laser-notched long-period fiber gratings, Optics and Lasers in Engineering 47, 1044-1048 (2009).

[43] Y. Wang, D. N. Wang, W. Jin, J. Ju, and H. L. Ho, Mode field profile and polarization dependence of long period fiber gratings written by CO2 laser, Opt. Communications, 281, 2522-2525, 2008.

[44] Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, Fiber Bragg gratings in small-core Ge-doped photonic crystal fibers, J. of Electronic Science and Technology of China 6, 429-433 (2008).

[45] H. F. Xuan, W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M. H. Chen, Hollow-core photonic bandgap fiber polarizer, Opt. Lett.33, 845-847 (2008).

[46] Y. Wang, D. N. Wang, W. Jin, and Y. Rao, Asymmetric transverse-load characteristics and polarization dependence of long period fiber gratings written by focused CO2 laser, Appl. Opt.46, 3079-3086 (2007).

[47] Y. Wang, W. Jin, and D. N. Wang, Strain characteristics of CO2-laser-carved long period fiber gratings, IEEE J. Quantum Electron.43, 101-108 (2007).

[48] L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. Zhao, Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect, IEEE J.of Lightwave Technol.25, 3563-3574, (2007)

[49] Y. Wang, D. N. Wang, W. Jin, and X. Fang, Continuously wavelength-tunable MQW Fabry-Perot laser diode pulse source with a fiber-based external cavity, IEEE J. Quantum Electron.42(9), 868-872, (2006).

[50] Y. Wang, D. N. Wang, and W. Jin, Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme, Appl. Opt.45, 6469-6472 (2006).

[51] Y. Wang, D. N. Wang, and W. Jin, CO2-laser-grooved long period fiber grating temperature sensor system based on the intensity modulation, Appl. Opt.45, 7966-7970 (2006).

[52] Y. Wang, D. N. Wang, W. Jin, J. Chen, X. Li, and J. Zhou, Reflectometry measuring refractive index and thickness of polymer samples simultaneously, J. Modern Opt., 53, 1845-1851 (2006).

[53] H. Shen, J. Chen, X. Li, Y. Wang, Group delay and dispersion analysis of compound high order microring resonator all-pass filter, Opt. Communications. 262, 200-205 (2006)

[54] J. Zhou, J. Chen, X. Li, G. Wu, and Y. Wang, Exact analytical solution for Raman fiber laser, IEEE Photon. Technol. Lett.18, 1097-1099 (2006).

[55] J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, Robust, compact, and flexible neural model for a fiber Raman amplifier, J. of Lightwave Technol.24, 2362-2367 (2006).

[56] J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, Frequency domain model to calculate the pump to signal RIN transfer in multi-pump Raman fiber amplifiers, Opt. Express14, 11024-11035 (2006).

[57] J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang and W. Jiang, Raman induced polarization dependent gain in orthogonally pumped parametric amplifiers, Opt. Express14, 235-242 (2006).

[58] J. Zhou, J. Chen, X. Li, G. Wu, W. Jiang, C. Shi and Y. Wang, A novel algorithm for a multi-cavity Raman fiber laser, Opt. Express14, 3427-3432 (2006).

[59] Y. Wang, J. Chen, X. Li, X. Zhang, J. Hong, A. Ye, Simultaneous measurement of various optical parameters in a multilayer optical waveguide by a Michelson precision reflectometer, Opt. Lett.30, 979-981 (2005).

[60] Y. Wang, J. Chen, X. Li, J. Zhou, and A. Ye, Electro-optic polymer waveguide grating with fast tuning capability, Appl. Opt.44, 3442-3447 (2005).

[61] Y. Wang, J. Chen, and Y. Rao, Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses, J. Opt. Soc. Am. B22, 1167-1172 (2005).

[62] J. Zhou, J. Chen, X. Li, Y. Wang and W. Jiang, A novel pump adjustment method for WDM pumped optical Raman amplifier, Opt. Communications248, 407-413 (2005).

[63] J. Zhou, J. Chen, X. Li, G. Wu and Y. Wang, Polarization effect in parametric amplifier, Chin. Opt. Lett., 3, 500-502 (2005).

[64] J. Hong, J. Chen, Y. Wang and X. Li. A Simplified Fiber-Optic In-Line Method to Measure the Electro-Optic Coefficient of Corona Poled Polymers. J. Polymer Research12, 89-92 (2005).

[65] 王义平, 陈建平, 李新碗, 周俊鹤, 沈浩, 施长海, 张晓红, 洪建勋, 叶爱伦, 快速可调谐电光聚合物波导光栅, 物理学报, 54 (10), 4782-4788, 2005.

[66] 王义平, 陈建平, 李新碗, 洪建勋, 张晓红, 周俊鹤, 叶爱伦, 光纤马赫曾德尔干涉法测量极化聚合物的电光系数, 光学学报, 25(10), 1339-1342, 2005.

[67] 王义平, 陈建平, 饶云江, 新型长周期光纤光栅的扭曲特性研究, 中国激光, 32(8), 1091-1096, 2005.

[68] 王义平, 陈建平, 饶云江, 同时测量弯曲曲率和弯曲方向的长周期光纤光栅传感器, 光电子激光, 16(10), 1139-1143, 2005.

[69] 王义平, 饶云江, 新型长周期光纤光栅的横向负载特性及其偏振相关性研究. 光子学报, 34(8), 1195-1200, 2005.

[70] 洪建勋, 陈建平, 王义平, 李新碗, 电光聚合物电晕极化过程中的电场和极化分析, 光电子技术25(2), 71-74, 2005.

[71] 沈浩,李新碗,周俊鹤,张晓红,王义平,陈建平, 可调微型环阵列加强马赫-曾德尔滤波性能分析, 光电子激光, 16(6), 670-673, 2005.

[72] 洪建勋, 陈建平, 李新碗, 王义平, 基于M-Z光纤干涉仪测量极化聚合物的电光系数, 光电子激光, 16(4), 462-465, 2005.

[73] 洪建勋,陈建平,李新碗,王义平,施长海, 基于Mach-Zehdner干涉仪的聚合物电光系数测量方法的性能改善, 中国激光, 32(9), 1271-1274, 2005.

[74] Y. Wang, J. Chen, X. Li, J. Hong, X. Zhang, J. Zhou and A. Ye, Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder interferometer, Appl. Phys. Lett.85, 5102-5103 (2004).

[75] Y. Wang and Y. Rao, Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously, Electron. Lett.40, 164-166 (2004).

[76] Y. Wang and Y. Rao, CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre, Electron. Lett.40, 1101-1102 (2004).

[77] Y. Wang, Y. Rao, Z. Ran, T. Zhu and X. Zeng, Bend-insensitive long-period fiber grating sensors, Opt. and Lasers in Engineering41, 233-239 (2004).

[78] 王义平, 饶云江, 高频CO2激光脉冲写入长周期光纤光栅的方法, 电子学报, 32(8),1322-1325, 2004.

[79] 饶云江,朱涛,冉曾令,王义平,江建, 高频CO2 激光脉冲写入的新型长周期光纤光栅及其在光通信中的应用, 通信学报, 25(10), 75-86, 2004.

[80] 洪建勋, 陈建平, 王义平, 李新碗, 周俊鹤, 栅极偏压对电光聚合物电晕极化的影响, 高技术通讯, 14(10), 7-10, 2004.

[81] 张晓红, 李新碗, 陈建平, 王义平, 洪建勋, 电光聚合物波导的设计制作及其在光集成中的应用探索, 光电子激光, 15 Suppl., 200-203, May 2004.

[82] Y. Wang, Y. Rao, Z. Ran, T. Zhu and A. Hu, A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses, IEEE Photon. Technol. Lett., 15, 251-253 (2003).

[83] Y. Rao, Y. Wang, T. Zhu, Z. Ran, and X. Zeng, Simultaneous measurement of transverse load and temperature using a single long-period fibre grating element, Chin. Phy. Lett.20, 72-75 (2003).

[84] 王义平, 饶云江, 冉曾令, 朱涛, 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 52(6), 1432-1437, 2003.

[85] 王义平, 饶云江, 冉曾令, 朱涛, 曾祥楷, 胡爱姿. 一种新颖的长周期光纤光栅可调增益均衡器. 光学学报, 23(8), 970-973, 2003.

[86] 饶云江, 王义平, 冉曾令, 朱涛, 曾祥楷. 单个长周期光纤光栅实现横向负载和温度的同时测量, 中国激光, 30(12), 1116-1120, 2003.

[87] 胡爱姿,饶云江, 王义平, 徐鹏, 基于新型长周期光纤光栅的动态横向负载传感器, 光子学报, 32 (11), 1359-1362, 2003.

[88] 江建, 饶云江, 牛永昌, 王义平, 廖天奎. 应用LPFG/EFPI集成式光纤传感器实现温度及应变的同时测量. 光子学报, 32(9), 1063-1066, 2003.

[89] 朱涛, 饶云江, 冉曾令, 王义平, 江建. 一种基于新型长周期光纤光栅的动态增益均衡器, 光子学报, 32(3), 283-285, 2003.

[90] 冉曾令, 饶云江, 朱涛, 江建, 曾祥楷, 王义平. 基于新型长周期光纤光栅的掺铒光纤放大器. 光子学报,32(1), 72-75, 2003.

[91] Y. Rao, S. Yuan, X. Zeng, D. Liang, Y. Zhu, Y. Wang, S. Huang, T. Liu, G. Fernando, L. Zhang and I. Bennion, Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system, Opt. and Lasers in Engineering38, 557-566 (2002).

[92] 王义平, 饶云江, 胡爱姿,曾祥楷, 冉曾令, 朱涛. 长周期光纤光栅扭曲传感器. 光学学报, 22(9), 1096-1099, 2002.

[93] 王义平, 饶云江, 冉曾令, 朱涛, 曾祥楷, 余般梅. 对弯曲不敏感的长周期光纤光栅传感器. 光子学报, 31(6), 725-729, 2002.

[94] 王义平, 饶云江, 曾祥楷. 长周期光纤光栅弯曲特性的耦合模理论分析. 光子学报, 2002, 31(10): 1205-1208

[95] 饶云江, 曾祥楷, 朱永, 王义平, 朱涛, 冉曾令. 非本征型法布里-珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用. 光学学报, 22(1), 85-88, 2002.

[96] Y. Rao, X. Zeng, Y. Zhu, Y.Wang, T. Zhu, Z.Ran, L.Zhang, I.Bennion, Temperature-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and an extrinsic Fabry-Perot, Chin. Phys. Lett.18, 643-645, 2001.

[97] 曾祥楷, 饶云江, 余般梅, 王义平, 朱涛, 冉曾令. “光纤应变、温度、振动同时测量新技术的研究. 光子学报, 30(10), 1254-1257, 2001.

[98] 李志敏, 曾一, 罗军, 王义平, 吴建军. 建设工程招投标微机网络管理信息系统, 重庆大学学报(自然科学版), 24(5), 26-29, 2001.

[99] 陈小文,肖沙里, 黄敏, 徐道连,王义平. 烟叶仓库环境控制方法的研究, 电子仪器仪表用户, 7(4), 5-9, 2000.

[100] 黄敏, 龙辉敏, 杨曦, 王义平, 王巍. 一种典型的英文字符识别算法, 电子仪器仪表用户, 7(4), 17-21, 2000.

会议论文

2014年

[101] Yiping Wang, Changrui Liao, Shen Liu, “High-sensitive optical sensors based on in-fiber air bubbles,” Session 2P9b, SC3: Ultrasensitive Optical Sensors, Progress In Electromagnetics Research Symposium (PIERS2014), Guangzhou, China, Sep. 2014. (Invited)

[102] Yiping Wang, Optical fiber interference devices and sensing applications, China International Optoelectronic Conference (CIOEC), Sep. 2-3, 2013, Shenzhen, China (Invited)

[103] Yiping Wang, Changrui Liao, Shen Liu, Zhengyong Li, and Jiangtao Zhou, In-fiber interferometer sensing devices and applications, The 6th Advanced Optical Methods Workshop, Shenzhen, China. Jul. 14-16, 2014. (Invited)

[104] Yiping Wang, Changrui Liao, Shen Liu, Zhengyong Li, and Jiangtao Zhou, Optical sensing applications of in-fiber interferometers, The OSA Topical Conference: “AOM 2014–The 4th Advances in Optoelectronics and Micro/nano-optics”, Sep. 17-20, 2014, Xi’an, China. (Invited)

[105] Yiping Wang, Changrui Liao, Shen Liu, Jiangtao Zhou, and Zhengyong Li, High-sensitive optical sensors based on in-fiber interferometers, Photonics Asia2014, Proc. of SPIE 9279-16, Oct. 9-11, 2014. Beijing China. (Invited)

[106] Yiping Wang, “In-fiber microstructure devices and sensing applications,” 2014年中国光纤传感学术会议暨产业化论坛, 2014年9月22-25, 大连理工大学, 大连. (特邀报告)

[107] 王义平, 基于飞秒激光微加工和电弧放电的光纤干涉仪传感器, 第三届国际光纤陀螺与光纤传感技术及应用研讨会, 2014年5月13-15日, 北京航天航空大学, 北京. (特邀报告)

[108] 王义平,光纤传感技术,2014年全国高校机械工程测试技术研究会学术年会,2014年8月22-24日,深圳大学,深圳. (特邀报告)

[109] 王义平, 光纤干涉传感器件及应用,第九届全国光子学学术会议暨中国光学学会纤维光学与集成光学专委会成立30周年大会,2014年11月7-9日, 电子科技大学,成都. (特邀报告)

[110] Yiping Wang , Shen Liu, Changrui Liao, Zhengyong Li, Qiao Wang, Guolu Yin, Jun He, Bing Sun, Jing Zhao, Jian Tang, “Temperature-insensitive strain sensor based on in-line Fabry-Perot interferometer,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 915725, Santander, Spain. Jun 2-6, 2014.

[111] Guolu Yin, Yiping Wang, Changrui Liao, Jiangtao Zhou, XiaoyongZhong, Shen Liu, Qiao Wang, Zhengyong Li, Bing Sun, Jun He and Guanjun Wang, “Improved arc discharge technique for inscribing compact long period fiber gratings “, Proc. of SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91577X, Santander, Spain. Jun 2-6, 2014.

[112] Changrui Liao, Lei Xu, Yiping Wang, D. N. Wang, Qiao Wang, Zhengyong Li, XiaoyongZhong, Jiangtao Zhou and Yingjie Liu, “Tunable phase-shifted FBG based on an in-grating bubble “, Proc. of SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 915778, Santander, Spain. Jun 2-6, 2014.

[113] Changrui Liao, Lei Xu,Yiping Wang, Shen Liu, Zhengyong Li, and Qiao Wang, “Silica diaphragm based fiber Fabry-Perot interferometric pressure sensor,” 2014年中国光纤传感学术会议暨产业化论坛, 口头报告, 大连, 2014年9月.

[114] Zhengyong Li, Changrui Liao, Yiping Wang, Xiaopeng Dong, Shen Liu, Kaiming Yang, Qiao Wang, and Jiangtao Zhou, “Mach-Zehnder interferometer based on twin-core fiber for refractive index sensing,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-36), 大连, 2014年9月.

[115] Shen Liu, Yiping Wang, Changrui Liao, Jun He, Zhengyong Li, and Kaiming Yang, “Rectangle air bubble created in a fiber for strain sensing application,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-37), 大连, 2014年9月.

[116] Bing Sun, Yiping Wang, Changrui Liao, Guolu Yin, Jiangtao Zhou, Jian Tang, and Shen Liu, “Miniature fiber-tip Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-38), 大连, 2014年9月.

[117] Goulu Yin, Yiping Wang, Changrui Liao, XiaoyongZhong, and Jian Tang, “Improved arc discharge technique for inscribing long period fiber gratings in SMF, PCF and PBF,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-39), 大连, 2014年9月.

[118] Jing Zhao, Guolu Yin, Yiping Wang, Junle Qu, Changrui Liao, Shen Liu, Jun He, Guanjun Wang, Xizheng Xu, Jiangtao Zhou, XiaoyongZhong, and Zhengyong Li, “Simultaneous measurement of strain and temperature based on side-polished fiber with surface scratches,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-40), 大连, 2014年9月.

[119] XiaoyongZhong, Yiping Wang, Changrui Liao, Shen Liu, Jian Tang, Qiao Wang, Jing Zhao, and Kaiming Yang, “Inflated long period fiber grating inscribed in photonic crystal fiber for strain measurement,” 2014年中国光纤传感学术会议暨产业化论坛, 张贴报告(Poster-41), 大连, 2014年9月.

[120] Changrui Liao, Lei Xu, Yiping Wang, D.N. Wang, Shen Liu, Zhengyong Li, XiaoyongZhong, Jiangtao Zhou, Qiao Wang, Kaiming Yang, “Femtosecond laser micromachined Optical Fiber In-line Interferometers,” Session 2A9, SC: Optical Fiber Sensing Devices, Progress In Electromagnetics Research Symposium (PIERS2014), Guangzhou, China, 2014. (Invited)

[121] Yingjie Liu, Yiping Wang, Bing Sun, Changrui Liao, “Compact tunable multibandpass filters based on liquid-filled photonic crystal fibers,” Session 2A9, SC: Optical Fiber Sensing Devices, Progress In Electromagnetics Research Symposium (PIERS2014), Guangzhou, China, 2014.

[122] Zhengyong Li, Yiping Wang, Changrui Liao, “Temperature-insensitive Refractive Index Sensor Based on In-fiber Michelson Interferometer,” Session 2A9, SC: Optical Fiber Sensing Devices, Progress In Electromagnetics Research Symposium (PIERS2014), Guangzhou, China, 2014.

2013年

[123] 王义平,光纤微加工制备微纳光子器件及应用,广东省光学学会2013年学术交流大会,2013年12月13~ 15日,中山市. (大会报告)

[124] 王义平,微结构光纤器件的制备技术和应用,2013年中国光学学会学术大会, 2013年8月15~ 18日,国防科技大学,长沙市中. (特邀报告)

[125] Yiping Wang, Changrui Liao, XiaoyongZhong, Zhengyong Li, Yingjie Liu, Jiangtao Zhou, and Kaiming Yang, “Selective-fluid-filled photonic crystal fibres and applications”, Proc. of SPIE Vol. 8914, Article number: UNSP 89140J, 2013, 5th International Symposium on Photoelectronic Detection and Imaging Technology and Applications (ISPDI 2013), June 2013, Beijing, China. (Invited)

[126] Yiping Wang, HartmutBartelt, Jens Kobelke, Wolfgang Ecke, Reinhardt Willsch, Changrui Liao, XiaoyongZhong, Zhengyong Li, Jiangtao Zhou and Yingjie Liu, “Optical attenuators based on fluid-filled microstructured optical fibers”, 2013 Optical Fiber Sensor Conference in China, May 2013, Hefei, China. (Invited)

[127] Yiping Wang, Microstructuredoptical fiber devices and sensing applications, China International Optoelectronic Conference (CIOE), Sep. 4-7, 2013, Shenzhen, China (Invited)

[128] iping Wang, HartmutBartelt, Jens Kobelke, Wolfgang Ecke, Reinhardt Willsch, Changrui Liao, XiaoyongZhong, Zhengyong Li, Jiangtao Zhou, and Yingjie Liu, “Optical attenuators based on fluid-filled photonic crystal fibers”, Asia Communications and Photonics Conference (ACP2013), ATh4C.2, 12-15 Nov. 2013, Beijing, China.

[129] Yiping Wang, Wei Jin, Dongning Wang, Changrui Liao, XiaoyongZhong, Zhengyong Li, Jiangtao Zhou, and Yingjie Liu, “Long period fiber gratings written in photonic crystal fibers by CO2 laser”, Prof. of SPIE Vol. 8924, Article number: 89243C, 2013, 4th Asia-Pacific Optical Sensors Conference (APOS), Oct. 2013, Wuhan, China.

[130] Jiangtao Zhou, Changrui Liao, Yiping Wang, Kaiming Yang, XiaoyongZhong, ZhengyongLi,Yingjie Liu, and Guangjun Wang, “Intensity-modulated strain sensor based on fiber Mach-Zehnder interferometer employing core-offset,” Prof. of SPIE Vol. 8924, Article number: 89240X, Fourth Asia Pacific Optical Sensors Conference (APOS), Wuhan, China, 2013.

[131] C. R. Liao, D. N. Wang, M. Wang, M. H. Yang, Yiping Wang, “Fiber in-line Michelson interferometer for refractive index sensing,” Prof. of SPIE Vol. 8924, Article number: 89240Q, Fourth Asia Pacific Optical Sensors Conference (APOS), Wuhan, China, 2013.

[132] Guanjun Wang, Yiping Wang,ChangruiLiao,Jiangtao Zhou, “A novel bio-detecting chip based on the opened fiber surface plasmon enhancement mechanism,” Prof. of SPIE Vol. 8924, Article number: 892420, Fourth Asia Pacific Optical Sensors Conference (APOS), Wuhan, China, 2013.

[133] 周江涛, 王义平, 廖常锐, “Temperature-insensitive Strain Sensor based on Fiber in-line Mach-Zehnder Interferometer,” 2013年中国光学年会, OJ1307010469, 口头报告, 2013年8月.

[134] 钟晓勇, 王义平, 廖常锐,”基于光子晶体光纤的Bragg 光栅写入技术”, 2013年中国光学年会, 口头报告, 2013年8月.

2012年及以前

[135] Yiping Wang, Optical fiber gratings written in Microstructured optical fibers, Photonics Global Conference 2012 (PGC2012), 13-16 Dec. 2012, Singapore. (Invited)

[136] Yiping Wang, In-Fiber gratings written in photonic crystal fibers, International Conference on Optical Fiber Sensing Technology and Its Application on Smart Grid, 13-15 Oct. 2012, Nanjing, China. (Invited)

[137] Y. Wang, Post-processing techniques for enhancing mode-coupling in long period fiber gratings, Proc. of SPIE Vol. 8421, 84214W, 22nd International Conference on Optical FiberSensors (OFS-22), 15-19 Oct. 2012,<bBeijing, China.

[138] Y. Wang, H. Bartelt, W. Ecke, R. Willsch, and J. Kobelke,UV-laser-inscribed fiber Bragg gratings in photonic crystal fibers and sensing applications, The 2011 International Conference on Optical Instrument and Technology: Optoelectronic Measurement Technology and System (OIT11-5), Prof. of SPIE 8201-73, Beijing, China (Invited)

[139] Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, and M. Rothhardt, Fabrications of Fiber Bragg gratings written in photonic crystal fibers, The 2011 Optical Fiber Sensors Conference (OFSC-2011), Harbin, China. (Invited)

[140] Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, Bend sensors based on periodically-tapered soft glass fibers, 21st International Conference on Optical Fiber Sensors, Proc. of SPIE 7753, 77534J, Ottawa, Canada, 2011,

[141] P. Wang, G. Brambilla, M. Ding, Y. Wang, Y. Semenova, Q. Wu, L. Bo, G. Farrell, An improved ratiometric wavelength measurement system incorporating fibre comb filters fabricated by CO2 laser irradiation, 21st International Conference on Optical Fiber Sensors, Proc. of SPIE 7753, 775355, Ottawa, Canada, 2011,

[142] Y. Wang, Fabrication and Application of CO2-Laser-Induced Long Period Fiber Gratings at the Forum, 5th Forum on Research and Development of Optical Fiber Sensors, June 30 to July 2, 2010, Guangzhou, China. (Invited)

[143] Y. Wang, W. Jin, S. Liu, and X. Tan, Selectively fluid-filled microstructured optical fibers and applications, 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China (2010)

[144] Y. Wang, W. Jin, X. Tan, and S. Liu, Orientation-dependent bending properties of selectively-filled photonic crystal fibres, Photon10 (the largest optics conference event in the UK), 87, Southampton, U.K. Aug. 2010.

[145] K.Schuster, J.Kobelke, Y.Wang, A.Schwuchow, J.Kirchhof, H.Bartelt, S.Pissadakis, Highly Photosensitive PCFs with Extremely Germanium Doped Core, ICO-Photonics Delphi, Greece, AIP Conference Proceedings, Volume 1288, pp. 47-51, 2010

[146] Y. Wang, H. Bartelt, W. Ecke, K. Moerl, W. Jin, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, S. Brueckner, and X. Tan, “Optical switch based on fluid-filled photonic crystal fiber,” in 14th OptoElectronics and Communications Conference, FV6, Hong Kong (2009).

[147] Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, J. Kobelke, K. Schroeder, R. Willsch, M. Rothhard, L. Shan, S. Brueckner, and D. J. Richardson, Fluid-filled microstructured optical fibers and switching applications, 20th International Conference on Optical Fibre Sensors, Proc. of SPIE 7503, 75035W, Edinburgh, U.K. (2009).

[148] J. Kobelke, K. Schuster, A. Schwuchow, Y. Wang, S. Bruckner, M. Becker, M. Rothhardt, J. Kirchhof, W. Ecke, R. Willsch, and H. Bartelt, “Microstrutured fibers with germanium doped core components,” in Photonic Crystal Fibers III, Proc. of SPIE 7357, 735704-735706, Prague, Czech (2009).

[149] E. Lindner, M. Becker, S. Brückner, Y. Wang, M. Rothhardt, H. Bartelt, Two Beam Interferometric Inscription of UV femtosecond Fiber Bragg Gratings, Fiber laser VI: Technology, Systems and Applications, 24-1-2009, San Jose, USA

[150] Y. Wang, S. Brueckner, J. Kobelke, M. Rothhardt, W. Ecke, R. Willsch and H. Bartelt, Sensing and splicing applications of small core Ge-doped photonic crystal fibers, 19th International Conference on Optical Fibre Sensors, Proc. of SPIE 7004, 70041S, Perth, Australia (2008).

[151] Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, Fiber Bragg gratings in small-core Ge-doped photonic crystal fibers, The 1st Asia-Pacific Optical Fiber Sensors Conference, Chengdu, China (2008).

[152] W. Jin, Y. Wang, J. Ju, H. Xuan, H. L. Ho, L. Xiao, D. N. Wang, Fabrication and characterization of long period gratings in air-core photonic bandgap fibers, 19thInternational Conference on Optical Fibre Sensors, Proc. of SPIE 7004, 70042C, Perth, Australia (2008).

[153] H. Xuan, W. Jin, J. Ju, Y. Wang, M. Zhang, Y. B. Liao, Y. H. Yang, Compact in-fiber polarizer based on the hollow-core photonic bandgap fiber, 19thInternational Conference on Optical Fibre Sensors, Proc. of SPIE 7004, 700408, Perth, Australia (2008).

[154] Y. Wang, and H. Bartelt, Fiber Bragg gratings in small core and microstructured optical fibers for sensing applications, Alexander von Humboldt Foundation Network Meeting, Magdeburg, Germany (2007) (Invited).

[155] D. N. Wang, Y. Wang, Y. Liu, and W. Jin, Long period fiber grating polarizer written on photonic crystal fiber, OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, BWC2, Quebec, Canada (2007).

[156] M. Yang, J. Chen, Y. Wang, and X. Li, Experimental study on the spectral behavior of an asymmetric long period fiber grating via erosion, Asia Optical Fiber Communication and Optoelectronics Conference, 106-108, Shanghai, China (2007)

[157] Y. Wang, W. Jin, D. N. Wang, and Y. Rao, Fabrication of Long Period Fiber Gratings by Carving Periodic Grooves on the Fiber Using a Focused CO2 Laser Beam, 18th International Conference on Optical Fiber Sensor, Cancun, Mexico (2006).

[158] Y. Wang, D. N. Wang, and W. Jin, Long period fiber grating temperature sensor system based on the intensity modulation, 18th International Conference on Optical Fiber Sensor, Cancun, Mexico (2006).

[159] Y. Wang, D. N. Wang, W. Jin, and Y. Rao, Asymmetric long period fiber gratings fabricated by the focused CO2 laser beam carving periodic grooves on the fiber, 5th International Conference on Optical Communications and Networks/ 2nd International Symposium on Advances and Trends in Fiber Optics and Applications, Chengdu, China (2006).

[160] D. N. Wang, Y. Wang, and W. Jin, Continuously wavelength-tunable short pulse fiber ring laser employing a high output power MQW Fabry-Perot laser diode, 5th International Conference on Optical Communications and Networks/the 2nd International Symposium on Advances and Trends in Fiber Optics and Applications, Chengdu, China (2006).

[161] W. Jin, Y. Wang, and J. Ju, Sensing with holey optical fibers, 6th International Symposium on Instrumentation and Control Technology, Proc. of SPIE 6357, Beijing, China (2006).

[162] Y. Wang, D. N. Wang, W. Jin, J. Chen, and X. Li, Simultaneous Measurement of Six Optical Parameters in a Planar Optical Waveguide, Advance Program Workshop on Frontiers in Nanophotonics, Hong Kong (2005).

[163] H. Shen, J. Chen, X. Li, and Y. Wang, Group delay and dispersion analysis of compound high order microring resonator all-pass filter, Passive components and fiber-based devices II, Proc. of SPIE 6019, Shanghai, China (2005).

[164] 沈浩, 李新碗, 王义平, 陈建平, 复合高阶微型环谐振腔全通滤波器的群延时和色散分析, 第四届中国国际光通信产业发展高峰论坛暨第五届中国光通信论坛, 武汉, 2005年11月.

[165] Y. Wang, and Y. Rao, Measuring bend-curvature and determining bend-direction simultaneously using long period fiber gratings, 24th annual conference on Lasers and Electro-Optics, CWM4,San Francisco,USA, 2004.

[166] Y. Wang, J. Chen, and Y. Rao, CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber, Symposium on Optical Fiber Measurements, 199-201, Colorado, USA, (2004).

[167] Y. Wang, J. Chen, X. Li, J. Hong, X. Zhang, J. Zhou, A. Ye,, Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer, Symposium on Optical Fiber Measurements, 56-61, Colorado, USA (2004).

[168] Y. Wang, J. Chen, X. Li, J. Hong, and A. Ye, Fiber-optic Mach-Zehnder interferometer measuring electro-optic coefficients of poled polymers, Conference on Asia-Pacific Optical and Wireless Communication, Proc. of SPIE 5624, 166-171, Beijing, China (2004).

[169] Y. Wang, J. Chen, X. Li, A. Ye, X. Zhang, and J. Zhou, Fast tunable electro-optic polymer waveguide gratings, Conference on Asia-Pacific Optical and Wireless Communication, Proc. of SPIE 5623, 587-593, Beijing, China, 2004.

[170] Y. Wang, J. Chen, X. Li, X. Zhang, J. Hong, and A. Ye, Michelson precision reflectometer measuring refractive index and thickness of polymer thin film simultaneously, 3rd International Conference on Optical Communications and Networks, 317-320, Hong Kong, China (2004).

[171] Y. Wang, J. Chen, X. Li, J. Hong, X. Zhang, J., and A. Ye, Novel fiber-optic Mach-Zehnder interferometry measuring electro-optic coefficients of poled polymers, International Sympoium on Advances and Trends in Fiber Optics and Applications, 346-350, Chongqing, China (2004).

[172] Y. Wang, Y. Rao, A. Hu, X. Zeng, Z. Ran, and T. Zhu, A novel fiber-optic torsion sensor based on a CO2-laser-induced long-period fiber grating. 15th International Conference of Optical Fibre Sensors, 147-150, Portland, USA (2002).

[173] Y. Wang, Y. Rao, Z. Ran, T. Zhu, and A. Hu, A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses, Conference on Asia-Pacific Optical and Wireless Communication, Proc. of SPIE 4906, 180-184, Shanghai, China (2002).

[174] Y. Wang, Y. Rao, Z. Ran, T. Zhu, and X. Zeng. A novel bend-insensitive long-period fiber grating sensor. Conference on Advanced Sensor Systems and Applications, Proc. of SPIE 4920, 87-91, Shanghai, China, 2002.

[175] Y. Rao, Y. Wang, T. Zhu, Z. Ran, and X. Zeng, Simultaneous measurement of transverse load and temperature using a single long-period fiber grating element, Conference on Advanced Sensor Systems and Applications, Proc. of SPIE 4920, 81-86, Shanghai, China (2002).

[176] Y. Rao, X. Zeng, Y. Wang, T. Zhu, and Z. Ran. Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fibre-Bragg-gratting/extrinsic Fabry-Rerot sensor system, 15th Conference on Optical Fibre Sensors, 207-210, Portland, USA (2002).

[177] X. Zeng, Y. Rao, Y. Wang, Z. Ran, and T. Zhu, Transverse load, static strain, temperature and vibration measurement using a cascaded FBG/EFPI/LPFG sensor system, 15th conference on Optical Fibre Sensors, 199-202, Portland, USA (2002).

[178] Y. Rao, Y.Wang, Z. Ran, T. Zhu, and B. Yu. Characteristics of novel long–period fiber gratings written by focused high-frequency CO2 laser pulses, Conference on Asia-Pacific Optical and Wireless Communications Conference, Proc. of SPIE 4581, 327-333, Beijing, China (2001).

[179] Y. Rao, T. Zhu, Z. Ran, B. Yu, and Y. Wang, Applications of CO2-induced long-period fibre gratings in Er-doped fibre amplifiers, Asia-Pacific Optical and Wireless Communications, Proc. of SPIE 4581, 319-326, Beijing, China (2001).

[180] Y. Rao, X. Zeng, Y.Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Temperature-strain discrimination using a wavelength-division-multiplexed chirped-FBG/EFPI sensor system, Conference on Advanced Photonic Sensors and Applications II, Proc. of SPIE 4596, 97-103, Singapore (2001).

[181] Y. Rao, S. Yuan, X. Zeng, D. Lian, Y.Wang, and S. Huang, Application of an improved EFPI/FBG sensor system to simultaneous strain/temperature measurement of advanced 3-D braided composite materials, Conference on Advanced Photonic Sensors and Applications II, Proc. of SPIE 4596, 110-118, Singapore, 2001.

[182] Y. Rao, Z. Ran, T. Zhu, X. Zeng, B. Yu, and Y. Wang, Low noise Er-doped fibre amplifiers using novel CO2-induced long period fibre gratings, Conference on Design, Fabrication, and Characterization of Photonic Devices II, Proc. of SPIE 4594, 78-85, Singapore (2001).

[183] S. Yuan, Y. Rao, R. Huang, D. Liang, X. Zhen, and Y.Wang, On strain measurement of braided composites using co-braided AEFPI optic fiber sensors, Conference on Fiber Optic Components, Subsystems, and Systems for Telecommunications, Proc. of SPIE 4604, 154-158, Nanjing, China (2001).