
IEEE SENSORS JOURNAL, VOL. 24, NO. 21, 1 NOVEMBER 2024 34591

Fast Shape Reconstruction Based on GPU
Parallel Computation in Optical Frequency

Domain Reflectometry
Rongyi Shan, Yanjie Meng , Huajian Zhong, Wenfa Liang, Shuai Xiao, Yuhao Kong, Zhenwei Peng,

Zhicai Zhang, Changrui Liao , Member, IEEE, Cailing Fu ,
and Yiping Wang , Senior Member, IEEE

Abstract—A fast shape reconstruction optical frequency
domain reflectometry (OFDR) system that employs graphics
processing unit (GPU) to parallelly calculate the cross corre-
lation wavelength shift of the two outer cores of a standard
multicore fiber (MCF) was proposed and demonstrated. The
effect of the number of threads in each block on the time con-
sumption was studied. The consumption time was 50.86 ms,
when the simulated data size and the number of threads
per block were 10 MS and 256, respectively. Compared to
the serial computing with CPU, the time consumption was
reduced by nearly 21 times for 2-D and 3-D fast shape sens-
ing. At the spatial resolution of 5 mm, the maximum reconstruction errors for 2-D and 3-D shape sensing were 3.23% and
2.47%, respectively, with MCF lengths of 47.1 and 43.6 cm.

Index Terms— Multicore fiber (MCF), optical frequency domain reflectometry (OFDR), parallel processing algorithm,
shape reconstruction.

I. INTRODUCTION

F IBER shape sensors based on multicore fiber (MCF)
[1], [2], [3] and fiber clusters [4], [5] have attracted

attention in fields, such as interventional therapy [6], aerospace
engineering [7], and structural health monitoring [8] due to
their ability to track the shape and position of dynamic objects
without visual contact [9]. Among them, the majority of
shape sensors are using wavelength-division multiplexing fiber
Bragg gratings (FBGs), whose sensing spatial resolution is
limited by grating spacing [10]. In contrast, shape sensor
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based on optical frequency domain reflectometry (OFDR)
with MCF has become the most promising sensor due to
its high spatial resolution [11]. Currently, the demand for
fast shape reconstruction is increasing rapidly in many fields.
However, the traditional cross correlation method that obtains
the strain distribution of each core, i.e., Rayleigh backscat-
tering (RBS) shift between the measurement and reference
RBS, is a time-consuming operation with a large data size.
To achieve fast strain sensing, various methods have been
proposed and demonstrated. Zhou et al. [12] proposed a
time-resolved OFDR that divided the overall sweep range
into several equal subsections for fast strain sensing, where
the measurement rate was up to 50 Hz with a spatial res-
olution of 20 cm. A joint algorithm of wavelength domain
differential accumulation and local cross correlation was also
proposed for fast strain measurement, which increased the
processing speed by 6.4 times on a 113.3-m-long fiber [13].
In addition, a phase dehopping filtering differential phase
strain demodulation method was applied to fast shape sensing,
where the shape reconstruction speed is improved from 940 to
104 ms, i.e., nearly ten times [14]. Although afore-adopted
algorithms could be used to achieve fast strain sensing, the
data processing remains a challenge. Fortunately, the data
processing rate for distributed optical fiber sensing could be
effectively accelerated by the parallel computing in graphics
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processing unit (GPU), attributing to its large number of
parallel computing units. The intrinsic superiority of GPU
parallel computation in phase-sensitive optical time domain
reflectometer for improving the data processing capability was
analyzed [15]. Subsequently, the GPU was used to accelerate
the data processing rate of OFDR wide strain measurement
to 800 Hz [16]. Moreover, the total process time of parallel
computing in GPU was enhanced about 81 times compared
to serial computing in CPU for real-time distributed dynamic
OFDR strain sensing [17]. Thus, the data processing could be
indeed accelerated by GPU.

In this letter, a GPU-based fast shape reconstruction OFDR
system was demonstrated, which uses a GPU to parallelly
calculate the cross correlation wavelength shift of the two outer
cores of the MCF. The process of calculating cross correlation
wavelength shift and effect of spatial resolution on the time
consumption using CPU and GPU were compared, and ten
kernel functions were constructed in the GPU. Moreover, the
effect of the number of threads in a block on occupancy rate
and time consumption was analyzed. The sensing properties,
including time consumption and reconstruction error, of 2-D
and 3-D shapes were further investigated by using GPU-based
OFDR.

II. EXPERIMENTAL SETUP AND METHODS

The experimental setup for GPU-based fast shape recon-
struction using conventional OFDR and MCF is illustrated in
Fig. 1(a). As shown in the inset of Fig. 1(a), the diameter of
the employed MCF is 125 µm, and the distance between the
central core, i.e., Core7 (C7), and the outer core is 35 µm
(SM7C1500, Fibercore Inc.). The output light from a tunable
laser source (TLS, N7776C, Keysight) was divided into two
parts, i.e., the auxiliary interferometer (AI) in the upper part
and the main interferometer (MI) in the lower part, via a 10:90
optical coupler (OC1). The sweeping range and sweeping rate
of the TLS were 1525–1575 nm and 150 nm/s, respectively;
10% of the light was sent to AI of a Michelson interferometer,
which was consisted of a delay fiber and two Faraday rotating
mirror (FRM, Thorlabs), i.e., FRM1 and FRM2. Note that the
length of delay fiber was 21.6 m. The signal generated by a
balanced photodetector (BPD1, PDB480C-AC, Thorlabs) was
used as external clock signal for data acquisition card (DAQ,
PCI 6115, NI) to sample the equidistant instantaneous optical
frequency points and suppress the nonlinear sweep effect of
the TLS; 90% of the light was sent to MI of a Mach–Zehnder
interferometer and split into two beams through a 50:50 OC2,
i.e., the reference light passed through a polarization controller
(PC) and the measurement light passed through an MCF with a
length of 6.24 m. Then, the RBS from the MCF is mixed with
the reference light by OC4. Two polarization beam splitters,
i.e., PBS1 and PBS2, were used to divide the mixed light
into two orthogonal polarization states, i.e., P-polarization and
S-polarization, which are received by two BPDs, i.e., BPD2
and BPD3, respectively, to reduce the polarization fad-
ing effect. Note that only the P-polarization signal was
used to achieve shape reconstruction, and the bandwidth
of BPD and the sampling rate of DAQ were 1.6 GHz
and 10 MS/s, respectively. Ultimately, the signal collected by

Fig. 1. (a) Experimental setup for GPU-based fast 3-D shape recon-
struction using OFDR and MCF; workflow diagram of RBS signal
acquisition using (b) optical switch and (c) optical coupler (OC). TLS:
tunable laser source; CIR: circulator; FRM: Faraday rotating mirror; PC:
polarization controller; PBS: polarization beam splitter; BPD: balanced
photodetector; DAQ: data acquisition card; PCI: peripheral component
interconnect; CPU: central processing unit; FIFO: fan-in-fan-out. Inset:
schematic of MCF end face.

DAQ and transferred to the workstation by peripheral compo-
nent interconnect (PCI). The workstation was used for signal
processing, consisting of a CPU (i7-12700KF, Intel Inc.) with a
floating-point peak computing power of 691.2 G floating-point
operations per second (GFLOPS) and a clock rate of 3.6 GHz,
as well as a GPU (NVIDIA GeForce RTX 3070 Ti, NVIDIA
Inc.) with a floating-point peak computing power of 21 750
GFLOPS and a clock rate of 1.58 GHz. Note that the accessi-
ble random access memory (RAM) of the CPU and GPU are
32 and 8 GB, respectively, while the RAM access speed of
CPU is 4.8 GHz.

According to [1], the fiber shape could be reconstructed
based on the combination of Core3, i.e., C3, and Core4, i.e., C4,
using vector projections method. As shown in Fig. 1(b), the
workflow of using the mechanical optical switch to acquire
the RBS signal of C3 and C4 is listed as follows. The signals
of C3 and C4, i.e., reference (Ref.) signals, were collected
separately at time of T1 and T2, respectively, when the MCF
was straight, i.e., without strain. Similarly, the measurement
(Mea.) signals of C3 and C4 were also collected at time of T3
and T4, respectively, when the MCF was bent. Different from
using a switch, the Mea. signal, i.e., combination signal of C3
and C4, i.e., C34, was simultaneously acquired by using an OC
at the time of T ′

3 , as shown in Fig. 1(c). Obviously, both the
data volume and acquisition time could be effectively reduced
by using an OC. Therefore, an OC was employed for parallel
measurement to achieve fast shape reconstruction [18].

Generally, the Ref. signal, i.e., C3 and C4, and Mea. signal,
i.e., C34, were first subjected to fast Fourier transformation
(FFT) to convert them from the optical frequency domain
to distance domain. Then, the afore-obtained signals were
separated into multiple segments of the same size, i.e., Seg1,
Seg2, . . . , and Segn . In the CPU, the strain distribution
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Fig. 2. Flowchart of cross correlation wavelength shift of Core3,
i.e., C3, and Core4, i.e., C4, of MCF using (a) CPU and (b) GPU,
respectively. Note that the collected signals of C3 and C4 are defined
as reference (Ref.) signals, when the MCF is straight, i.e., without
strain; the measurement (Mea.) signal is defined as the combination
signal of C3 and C4, i.e., C34, when the MCF is bent. FFT: fast Fourier
transformation; IFFT: inverse FFT.

along C3 and C4 was achieved by serially calculating the
wavelength shift of each segment, i.e., cycling n times,
as shown in Fig. 2(a). In the GPU, the wavelength shift of
C3, i.e., 1λ1, 1λ2, . . . ,1λn , and C4, i.e., 1λ ′

1, 1λ ′

2, . . . ,1λ ′
n ,

was obtained by parallel performing cross correlation between
C3 and C34 and C4 and C34, respectively. Compared to the
CPU, the cross correlation calculations of n segments of C3,
i.e., Seg1

3 and Seg1
34, Seg2

3 and Seg2
34, . . . , Segn

3 and Segn
34,

and C4, i.e., Seg1
4 and Seg1

34, Seg2
4 and Seg2

34, . . . , Segn
34 and

Segn
34, were performed synchronously in the GPU, as shown

in Fig. 2(b). In other words, the strain of C3 and C4 needs to
be demodulated in the GPU only once. Therefore, the GPU
instead of CPU was selected to achieve the calculation of
wavelength shift for fast shape reconstruction.

The detailed process to calculate wavelength shift for shape
reconstruction was illustrated in Fig. 3. In the CPU side, the
initialization operation was first performed to allocate GPU’s
memory and initialize the demodulation parameters, and then,
the Ref. signals of C3 and C4 and Mea. signal of C34 were
cached in RAM and uploaded to the GPU’s memory via PCI
express (PCIE), as shown in Fig. 3(a). As shown in Fig. 3(b),
in the GPU side, the signal subjected to FFT was separated
and padded with zero to size M for each segment using
Kernel_1, i.e., Step1. Generally, the data size M was chosen
as a power of 2 to maximize the computational efficiency
of FFT and inverse FFT (IFFT) in the GPU [19]. Step2, the
IFFT was conducted and the amplitude of the complex signal
was calculated using Kernel_2. Step3, the reduction method
was employed to sum and average each segment of the Ref.
and Mea. signal, corresponding to the use of Kernel_3 and
Kernel_4, respectively. Step4, the Ref. signal was reversed
and padded with zeros to the size of 2M − 1 using Kernel_5,
while Mea. signal was directly padded with zeros to the same

Fig. 3. (a) Software scheme of data parallel computing for shape
reconstruction based on OFDR using CPU and GPU. (b) Flowchart
of library and kernel functions in GPU. RAM: random access memory;
PCIE: PCI express; SM: streaming multiprocessor.

size using Kernel_6. To improve the correlation between the
Ref. and Mea. signal, the remove average method was used to
subtract the average of segmented data. It could be given by

DRef′(i) = DRef(i) −
SRef

+ SMea

M
(1)

DMea′

(i) = DMea(i) −
SRef

+ SMea

M
(2)

where SRef and SMea were the results obtained using the
reduction summation method, representing the summation of
DRef and DMea, which reference and measurement data after
taking amplitude, respectively. Step5, the FFT and IFFT were
sequentially performed on Ref. and Mea. signal, where the
result of FFT was multiplied by Kernel_7 and IFFT was taken
an absolute value using Kernel_8. Step6, peak searching was
conducted on each segment by Kernel_10 and Kernel_11 that
executed with the reduction method, where Kernel_9 was used
for zero-padding interpolation to the data size of 2M on each
segment to enhance the computational efficiency in reduction
method. At this time, the wavelength shift along C3 and C4,
corresponding to strain_1 and strain_2, could be calculated
by cross correlation operation between C3 and C34 and C4
and C34 in the GPU. Obviously, 11 custom kernel functions,
i.e., Kernel_1, Kernel_2, . . . , and Kernel_11, were all used for
parallel computing in the GPU.

As shown in Fig. 3(a), a streaming multiprocessor (SM)
consisted of n blocks, i.e., Block1, Block2, . . . , and Blockn ,
with one block consisting of m threads, i.e., T0, T1, . . . ,

and Tm , respectively. Multiple SMs of the GPU, i.e., SM1,
SM2, . . . , and SMp, were run simultaneously in each kernel
function. Therefore, a large number of independent threads
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Fig. 4. (a) SM occupancy of kernel functions under different numbers of
threads in each block. (b) Time consumption of different threads under
the simulated data size of 10 MS. (c) Comparison of time consumption
using parallel and serial computing. Note that the number of threads,
sliding window overlap rate, size after zero padding, and the length of
MCF in (c) are 256, 80%, 2∧14, and 50 cm, respectively.

were executed simultaneously to accomplish the parallel com-
putation in the GPU for shape reconstruction [17]. In the
GPU, computational efficiency was primarily influenced by
the number of threads in a block, which can be reflected in
the occupancy rate of the SM. Usually, a warp is 32 threads,
which running the same instruction. The relationship between
the occupancy rate of SM, i.e., η, and the number of warps
could be given by [20]

η =
Wactive

Wmax
=

Wactive

48
(3)

where Wactive and Wmax are the active and maximum number
of warps for each SM, respectively, and Wmax = 48. Here, the
active number of warps, i.e., Wactive, for each SM could be
given by [20]

Wactive = Nblocks/SM · Nwarps/block

= min(Bmax, ⌊Wmax/(Tm/32)⌋) · Tm/32
= min(16, ⌊48/(Tm/32)⌋) · Tm/32. (4)

Here, the maximum number of blocks is 16, i.e., Bmax = 16,
and the symbol of ⌊ ⌋ is the round-down calculation. Based
on (4), the occupancy rate of the SM, i.e., η, is only dependent
on the number of threads, i.e., Tm . As shown in Fig. 4, the
effect of the number of threads in a block on occupancy rate
was analyzed and simulated, when the number of threads
varied from 64 to 256 with a step of 32. Obviously, the
occupancy rate is up to 100% under the number of threads
of 96, 128, 192, and 256, respectively, as shown in Fig. 4(a).
To obtain the optimal number of threads, the time consumption
of different threads per block under the simulated data size
of 10 MS was compared, as shown in Fig. 4(b). Obviously,
the time consumption was consistent with the occupancy rate,
i.e., the higher the occupancy rate, the less consumption time,
and the higher the computing efficiency. The occupancy rate
and consumption time are 100% and 50.86 ms, when the
number of threads is 256.

TABLE I
PROCESSED DATA SIZE AND THE NUMBER OF THREADS AND

BLOCKS IN EACH KERNEL FUNCTION (Tm = 256)

Furthermore, the number of blocks allocated in each kernel
function, i.e., Bm , based on data size and the number of threads
could be expressed as

Bm = ⌈Dk/Tm⌉ (5)

where Dk is the actual data size processed in the kernel
functions, and the symbol of ⌈ ⌉ is the round-up calculation.
As previously mentioned, each kernel function is used to
process data from two cores simultaneously, and each thread is
used to process two data points simultaneously. The processed
data size and the number of allocated threads and blocks
in each kernel function are listed in Table I. To improve
computing efficiency through reduction method, the number
of threads in Kernel_4 and Kernel_11 was set to M/Tm and
2M/Tm , respectively.

To demonstrate the performance of GPU-based OFDR, the
effect of spatial resolution on the time consumption was
compared using CPU and GPU. Here, only the calculation time
in MATLAB and CUDA toolkit is considered as time con-
sumption, ignoring the sweeping time of the TLS. As shown
in Fig. 4(c), the time consumption using parallel computing is
93.75, 44.18, 33.41, 25.32, and 20.72 ms at spatial resolutions
of 2.5, 5.0, 7.5, 10.0, and 12.5 mm, corresponding to1903.87,
988.96, 670.83, 500.46, and 404.43 ms using serial computing.
Note that the number of threads, window overlap rate, size
after zero padding, and the length of MCF are 256, 80%, 2∧14,
and 50 cm, respectively, i.e., overlap = 80%, M = 2∧14, and
l = 50 cm. Obviously, the higher the spatial resolution, the
longer the time consumed. Moreover, the time consumption
was shortened by nearly 22 times at the spatial resolution of
5 mm, while only about 20 times at the spatial resolutions
of 2.5, 7.5, 10.0, and 12.5 mm, and the time consumption
of parallel computing is much less than serial computing.
Therefore, a spatial resolution of 5 mm was finally selected
for subsequent shape reconstruction.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the performance of the GPU-based OFDR sys-
tem, the 2-D and 3-D shape sensing properties were further
investigated. As shown in Fig. 5(a), the MCF was laid on
curvature plate with radii of 15.0, 12.5, 10.0, and 7.5 cm,
respectively. Note that the length of the reconstructed MCF is
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Fig. 5. (a) Schematic of using MCF for 2-D shape sensing; obtained
strain distribution of (b) C3 and (c) C4 under the curvature radius of 7.5,
10.0, 12.5, and 15.0 cm, respectively. Calculated (d) curvature radius
and (e) bending orientation at the groove curvature radius of 15.0 cm.
(f) Reconstructed 2-D shapes with curvature radii of 7.5 cm, 10.0, 12.5,
and 15.0, respectively.

set to 47.1 cm, corresponding to the arc length under maximum
curvature radius, i.e., R4 = 15 cm. The strain distribution of C3
and C4 calculated through flowchart in Fig. 3 was illustrated
in Fig. 5(b) and (c). When the curvature radii were 7.5, 10.0,
12.5, and 15.0 cm, the obtained average strains of C3 were
465, 348, 285, and 223 µε, respectively, corresponding to 440,
323, 252, and 194 µε of C4. Note that the spatial resolution,
window overlap rate, and data size after zero padding are
5 mm, 80%, and 2∧14 based on the previous optimization
result, respectively. As shown in Fig. 5(d), the curvature radius
derived from C34 using apparent curvature vector method
was ranged from 13.94 to 15.58 cm. The average curvature
radius, i.e., 14.88 cm, exhibited tiny difference with the setting,
i.e., 15.0 cm, and the large curvature radius at the starting
and ending section was caused by the mismatch between the
fiber and groove diameter [21]. Moreover, the average bending
orientation was fluctuated from 0.047 to 0.16 rad, where the
average was 0.087 rad, as shown in Fig. 5(e). As shown
in Fig. 5(a) and (f), the 2-D shapes of MCF were well
reconstructed based on the afore-obtained curvature radius and
bending orientation using the Bishop framework [22]. The
slight shape deviations observed in the zero-strain region with
curvature radii of 7.5, 10.0, and 12.5 cm were due to the
slight distortion and outward expansion of MCF when placed
in the groove. The reconstruction errors, i.e., the Euclidean
distance between the actual and reconstructed end position,
were 3.23%, 2.26%, 2.51%, and 2.12%, respectively.

Fig. 6. (a) Schematic of using MCF for 3-D shape sensing; calculated
(b) curvature radius and (c) bending orientation based on C34 combina-
tion and (d) reconstructed spiral 3-D shape.

TABLE II
TIME CONSUMPTION COMPARISON BETWEEN CPU AND GPU FOR

2-D AND 3-D SHAPE SENSING

As shown in Fig. 6(a), the MCF was further placed in
a spiral groove on the cylinder, where the diameter and
height of the cylinder were 8.7 and 15.1 cm, respectively.
Similarly, the obtained curvature radius was between 4.78 and
4.91 cm, as shown in Fig. 6(b). The average curvature radius
was 4.89 cm, which was 0.05 cm different from the theo-
retical radius of spiral curve, i.e., 4.94 cm. Moreover, the
bending orientation was varied linearly from 1.76 rad to π ,
−π to −1.59 rad, as shown in Fig. 6(c). The reconstructed
3-D shape was also well consistent with the designed spiral
curve, as shown by the red and blue curves in Fig. 6(d),
where the reconstruction error was 2.47% under the length
of 43.6 cm. This indicated that the 2-D and 3-D shape of
standard MCF could be well reconstructed using GPU parallel
computation.

Moreover, the time consumption of deploying the Bishop
reconstruction algorithm on CPU and GPU was compared.
The entire reconstruction algorithm deployed on the CPU took
0.77 ms, while performing partial reconstruction algorithm
on the GPU cost 1.56 ms. Thus, the Bishop reconstruc-
tion algorithm was executed on the CPU. In addition, the
time consumption of using CPU and GPU for 2-D and
3-D shape reconstruction was further compared, as shown in
Table II. It is obvious that the time consumption of 2-D shape
reconstruction is greater than 3-D shape reconstruction due
to the used MCF length for 2-D, i.e., 47.1 cm, is longer
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than that for 3-D, i.e., 43.6 cm. The time consumption
was reduced by nearly 21 times for 2-D and 3-D shape
sensing.

IV. CONCLUSION

In this work, a fast shape reconstruction OFDR system
that employs GPU to parallelly calculate the cross correlation
wavelength shift of the two outer cores of an MCF was
proposed and demonstrated. The optical coupler was employed
to achieve parallel measurement. The number of threads per
block was set 256, where the occupancy rate is 100%, and
consumption time under a simulated data size of 10 MS is
50.86 ms. The time consumption of GPU, i.e., 44.18 ms,
is much less than CPU, i.e., 988.96 ms, under the spatial
resolution and MCF length of 5 mm and 50 cm, respectively.
Using GPU parallel computation, the 2-D and 3-D shapes,
i.e., wavelength shift of two outer cores of standard MCF,
were well reconstructed under the spatial resolution of 5 mm.
The reconstruction errors of 2-D shapes, i.e., curvature radii of
7.5, 10.0, 12.5, and 15.0 cm, were 3.23%, 2.26%, 2.51%, and
2.12%, while 2.47% for 3-D spiral shape. Compared to the
serial computing with CPU, the time consumption is reduced
by nearly 21 times for 2-D and 3-D shape sensing.
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